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Executive summary 
 
 
 
Chilling requirements for hot boned meat in Australia have been established based on predictive 
microbiology precepts. 
 
Hot boning is regulated via AQIS Notice 2001/20 using a Hot Boning Index (HBI) to describe predicted 
growth of E. coli. 
 
Company chilling regimes are assessed against the following criteria at the site of microbiological concern 
(the slowest cooling point): 

• Average Hot Boning Index (HBI) of no more than 1.5 
• 80% of the HBIs must be no more than 2.0 
• Upper target HBI of no more than 2.5 

 
A predictive microbiology model has been developed with parameters of pH 6.5, water activity 0.993 
and lactate 51.7 mM (Ross et al. 2003).  
 
The model has been evaluated and found to predict growth more accurately than existing predictive 
models (Mellefont et al. 2003). 
 
Validation of the model has been carried out by inoculating hot boned meat in cartons with faeces or 
E. coli cultures with acceptable correlation between observed and predicted growth (R2=0.89). 
 
Validation of the model has been carried out by inoculating lean or fatty surfaces of primals with 
faeces or E. coli cultures with a reasonable correlation between observed and predicted growth 
(R2=0.56).  It is expected that the use of different model parameters to account for fatty or lean 
surfaces would improve the correlation and lead to a more realistic estimate of the HBI. 
 
Simulated boxed product modelling suggests that the average HBI for a whole box of product would 
be almost 1 less than the HBI at the slowest cooling point. Similarly, the average HBI for the whole 
mass of a slow-cooling rump (not just the surface) was determined to be almost 1 less than the HBI 
at the slowest cooling point. 
 
Microbiological and chilling data from in-plant monitoring demonstrate that the HBI is achievable and 
that the microbiological quality of the chilled product is excellent. 
 
In the next revision of the Export Meat Orders, the term “HBI” will become subsumed within the term 
“Refrigeration Index” (RI) which will be used to regulate chilling of meat throughout the Australian 
industry. The criteria used to assess whether a meat processor is conforming with the RI are identical 
with those now used for the HBI.  
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Introduction 
 
 
The hot boning process is regulated by AQIS Notice 2001/20, in which the temperature control of the 
chilling phase is based on predictive microbiology principles. Specifically, each company is required 
to establish that each chilling regime meets performance criteria for predicted growth of E. coli at the 
site of microbiological concern (the slowest cooling point) in which potential log10 increase is a mean 
of 1.5; a target upper limit of 2.5; and an 80th percentile of 2.0. 
 
The purpose of the present document is to supply scientific information supporting the formulation of 
AQIS Notice 2001/20 and validation of the model used to measure predicted growth of E. coli by  
individual companies. 
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1  Background to regulation of hot boning in 
Australia 
 
 
The concept of deboning meat from “hot” carcases was first mooted in the early-1970s with 
advantages cited such as reduced chilling space, labour costs from avoiding double handling, and 
better yields (Visser 1977; Cuthbertson, 1979). The main disadvantage was considered 
microbiological, because meat remains at a temperature suitable for growth of any contaminating 
microorganisms for some hours. An early code of practice in Australia stipulated chilling meat to 7°C 
or colder within 3 hours of slaughter (2 hours from commencement of boning) and then freezing 
within a further 10 hours, a regime which, unfortunately, could not be achieved by normal cooling 
practices (Grau and Herbert, 1974). 
 
By 1980, CSIRO researchers had developed an equation which predicted growth of E. coli on beef 
trim in cartons during chilling. Predicted growth had also been compared with actual growth of E. coli 
in blended meat at temperatures between 10 and 40°C (Table 1) confirming the opportunity for 2-3 
log growth on meat packed “hot” (Herbert and Smith, 1980).  
 
 

Table 1: Growth of E. coli on fresh meat 
Approximate initial 
temperature (°C) 

Calculated E. coli 
increase (log 10) 

Actual E. coli 
increase (log 10) 

Difference 
(log 10) 

35 2.36 2.29 +0.07 
25 2.35 2.43 -0.08 
15 1.21 1.16 +0.05 

 
 
Herbert and Smith (1980) also calculated cooling rates required to cool hot boned meats so that, on 
average, through a carton, E. coli grew no more than one generation (i.e. doubled). The calculation 
took into account that meat on the outside of the carton would cool more quickly (with no, or little 
increase in E. coli) while meat at the thermal centre might increase 2-3 log. Finally, the authors 
stipulated cooling regimes which would satisfy the requirement of an average E. coli increase of one 
doubling. For 27.2kg cartons cooled in air blast freezers (the industry “norm”) meat could be no 
warmer than 25°C if the freezer air temperature was –35°C.  
 
This requirement made boning directly off the slaughter floor (“true hot boning”) impossible and 
companies resorted to preliminary cooling of carcases in a chiller, followed by boning – a process 
variously termed “warm boning”, “boning-on-the-curve” or “same-day boning”.  
 
As the responsible regulatory authority, the Commonwealth Department of Primary Industry was 
concerned about ensuring meat safety when faced with the proposal that meat could be boned 
without first being reduced in temperature. Consideration was given to the potential for bacteria on 
the meat to proliferate when the warm meat was placed in a carton before refrigeration occurred. The 
carton and the air within would act as insulation and would also reduce drying of the surfaces thus 
negating one of the primary antimicrobial effects of conventional chilling. Intuitively, the product was 
considered to represent a considerable hazard unless procedures were put in place to minimise that 
hazard. 
 
The first mention of hot boning in export legislation is a 1981 amendment to the Bureau of Animal 
Health Manual of Instruction for Meat Inspection and Meat Handling Procedures. The amendment 
contains detailed instructions relating to the agreements to be entered into and assurances to be 
made in order to permit hot boning to occur. 
 
When the Export Meat Orders (EMOs) were published in 1985 hot boning was addressed by EMOs 
282 to 284 and associated references in the Australian Export Meat Manual (Volume I). The EMOs 
required an approved program to be in place before hot boning could commence and Volume I 
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contained the requirements to be addressed, including “documentary evidence from a competent 
expert that the facilities can, in practice, consistently meet the temperature and time combinations 
proposed”.  
 
In 1988, hot boning requirements were introduced to Volume III of the Meat Manual and the table of 
time/temperature combinations, in 1°C increments, appeared. The table was based upon the premise 
that no more than a potential tenfold (1 log10) increase in mesophilic bacteria should be permitted at 
any point in a carton during the cooling process to 8°C. The maximum times allowed to cool meat to 
8°C for meat packed between 35-20°C (the range of hot and warm boning) are summarised in 
Spooncer (1993) and range from 417 minutes for meat packed at 35°C to 793 minutes if meat were 
packed at 20°C. Spooncer concluded with “For meat boned straight off the slaughter floor, the 
cooling rates that apply to hot-boned meat cannot be achieved with conventional packing and 
freezing techniques” but suggested satisfactory cooling could be achieved if cartons were reduced in 
cross sectional area and cooled either in a plate freezer or in an air blast at unusually low 
temperature (colder than –35°C) and high air velocity (>3m/s). 
 
During the 1990s true hot boning became more attractive because of advantages such as: 

• Reduced processing time from slaughter to load-out 
• Lower chilling space and other capital cost requirements 
• Reduced energy consumption and other chiller costs 
• Increased boning yield 
• Improved productivity 
• Elimination of occupational health and safety problems associated with hard fat 

 
In 1994 an AQIS Meat Notice (94/7) was issued that introduced some flexibility in the arrangements 
provided the final product remained microbiologically equivalent to conventionally boned meat. This 
became known as the alternate protocol. The Notice superseded the entries in Volume I and Volume 
III and retained the table of times but changed the target temperature from 80C to 70C. It also 
introduced the possibility of saving chilled cuts. The Notice allowed companies to operate under a 
Hot Boning Approved Program. Each company was required to provide microbiological data to 
support their application for an approved program obtained by an “expert authority” approved by the 
Secretary of the Australian Quarantine and Inspection Service (AQIS).  
 
During this period several new plants were constructed in Australia specifically for hot boning. These 
plants were mostly equipped with plate freezers and had slaughter and dressing rates which were in 
equilibrium with the time required for carcases to be hot boned i.e. boning and packing rates dictated 
slaughter chain speed. However, even with the efficiency of plate freezing, it became apparent that 
primal cuts (vacuum-packed) could not be chilled to meet the requirements of AQIS Notice 94/2. 
Thus, hot boning plants were required to operate under an approved program, with attendant 
monitoring requirements which were considered onerous by the industry.  
 
A number of plants constructed in Australia were of similar design with those operated in New 
Zealand, where hot boning of beef had become a major component of the industry. These plants 
were able to operate in accordance with NZ regulations and since product from that country was 
exported to many countries (including Australia) it was questioned whether AQIS Notice 94/2 should 
be reconsidered. 
 
In 1999 a scientific panel was convened by Meat and Livestock Australia (MLA) to consider 
alternative approaches to chilling and freezing of hot boned meat. The panel was satisfied that the 
hot boning industry was producing bulk-packed frozen meat equivalent to that produced as a result of 
conventional boning and proposed a revised approach. Vanderlinde and Murray (1995) were able to 
segment data from the first national baseline study (Vanderlinde et al. 1999) and conclude that there 
was little difference in the microbiological profile of manufacturing meat from hot- and cold-boned 
carcases. The second national baseline study of 1998 provided confirmation (Table 2) with little 
difference between hot boned and conventionally boned meat for several microbiological parameters 
(Phillips et al. 2001). 
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Table 2: Microbiological profile of hot boned and cold boned meat (Phillips 1999) 
 Hot boned meat 

(n=131) 
Cold boned meat 

(n=857) 
Mean log Total Viable 
Count per gram (25°C) 

1.92 2.09 

E. coli (% detected) 0.8 5.7 
S. aureus (% detected) 17.9 15.3 

 
 
AQIS Notice 2000/06 provided details of a year-long study where companies could operate under 
trial conditions while their processes were assessed under new predictive microbiological criteria that 
took into account variability in the production process. The Notice also defined the term Hot Boning 
Index (HBI). 
  
During the trial, time/temperature recordings were collected from the time of carton closure until the 
product temperature fell below 7oC. It is generally accepted that freezing and frozen storage reduces 
the number of E. coli present, therefore, the HBI should overestimate the potential growth at the 
thermal centre of the carton. Cartons freeze from the outside in, hence bacterial growth is inhibited 
most quickly in the outer layers. The slowest cooling point in the carton (the thermal centre) 
represents only a small proportion of the total amount of meat in the carton. Therefore, the HBI for 
each carton represents a worst-case  i.e. potential growth at the slowest-cooling portion of the carton. 
It provides a more stringent assessment than would be obtained by normal sampling procedures e.g. 
microbiological testing of samples drilled aseptically from frozen cartons. 
 
Using the data, a Hot Boning Index (HBI) was calculated for each carton of logged product based on 
log increase of E. coli. The HBI is obtained using a predictive microbiology model that estimates the 
number of generations of E. coli at the centre of the carton from time/temperature recordings 
collected during the refrigeration process (see section 2 below). The number of generations can then 
easily be converted into logarithms of growth. The HBI, similar to the Process Hygiene Index used in 
New Zealand, is used to assess the refrigeration processes of hot-boning plants. 
 
When each company had surveyed all chilling/freezing regimes the data (HBIs) were assessed 
against the following criteria: 

• Average Hot Boning Index (HBI) of no more than 1.5 
• 80% of the HBIs must be no more than 2.0 
• Upper target HBI of no more than 2.5 

 
The three criteria selected were similar to those which comprised the PHI used in New Zealand, 
reflecting the fact that this country had satisfied controlling authorities regarding the efficacy of the 
predictive microbiology approach.  
 
An expert panel of scientists and industry representatives reviewed the results of the trial and 
recommended retaining the interim criteria as criteria for approval and on-going compliance by plants 
conducting boning operations prior to completion of carcase chilling in accordance with Export Meat 
Order 250.1. 
 
Following completion of the trial, AQIS Notice 2001/20 was published advising that the panel had 
decided to adopt the HBI criteria used during the trial. It advised that all previous approved programs 
were superseded. Establishments that had submitted data demonstrating their processes met the 
criteria received on-going approval of their programs. Where the criteria had not been met or where 
plants had failed to submit data, program approvals lapsed and new validations were required.  
 
Currently, hot boning is regulated via AQIS Notice 2001/20, which essentially confirms the interim 
criteria specified in AQIS Notice 2000/06. 
 
It should be noted that, in Australia’s next issue of the Export Meat Orders, the term “HBI” will 
become subsumed within the term “Refrigeration Index” (RI) which will be used to regulate chilling of 
meat throughout the Australian industry. The criteria used to assess whether a meat processor is 
conforming with the RI are identical with those now used for the HBI.  
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2  Predictive microbiology model used for 
regulation of hot boning 
 
The model, developed by University of Tasmania, is based on 236 growth rate data sets and includes 
factors additional to those of Herbert and Smith (1980), specifically, pH, lactate and water activity. 
Further details are given in Ross et al. (2003). The equation (shown in Section 3) provides the growth 
rate in generations per hour (Table 3). 
 

Table 3: Growth rates at various temperatures using the equation  
of Ross et al. (2003) 

Temperature (°C) Generations/h 
35 2.79 
30 2.02 
25 1.33 
20 0.77 
10 0.105 

 
 
The model parameters for pH, aW and lactate were set based on data for bulk-packaged meat. It is 
impractical for processors to measure these values routinely; therefore average values were used 
that gave good agreement with observed growth rates. The parameters used were pH 6.5, aW 0.993 
and lactate 51.7 mM. Five generations (1.5 log) are deducted from the predicted potential increase 
on the basis of evidence from CSIRO regarding the effect of lag phase (Smith, 1985) and from Ross 
(1999). 
 
The latter author reviewed the uncertainty and unpredictability of bacterial lag times and the 
limitations this imposes on the application of predictive microbiology. He analysed lag time 
information obtained from the literature as well as information from novel experiments. The 
information obtained suggested that: 

• While lag times are highly variable, apparent variability can be reduced by using the concept 
of relative lag times or ‘generation time equivalents’ i.e. the ratio of lag time to generation 
time (LGR). 

• Although lag times may take almost any value, there is a common pattern of distribution of 
relative lag times for a wide range of species across a wide range of conditions. 

• That common distribution of relative lag times has a sharp peak in the range 4-6 generation 
time equivalents. 

 
These results have significance for the application of predictive microbiology to interpret the hygienic 
adequacy of carcase chilling and other meat processing and handling operations. 
From a practical perspective, a lag time of 3 generation time equivalents reduced the expected 
growth without lag by 0.9 log10 cfu, i.e. almost a factor of ten. Four or 5 generation times of lag 
equate to a reduction in the expected growth of 1.2 and 1.5 log cfu respectively.  
The practical significance of these results to the meat industry is that there is now a substantial body 
of information to justify the inclusion of lag times in calculations of the effects of different meat 
processing and handling procedures. Ross (1999) observed that there was a substantial lag phase 
equivalent to 4-5 generation times when Klebsiella oxytoca, an enteric surrogate for E. coli, was 
inoculated on to meat carcasses during in-plant studies. 
 
Similar observations were noted during the development of the US and UK predictive models 
databases (respectively, Pathogen Modelling Program and FoodMicroModel). For the former, 
Buchanan (pers. comm.) indicated a lag phase duration equivalent to approximately 4 generation 
times and observed that this was consistent with pathogen behaviour on foods. For the latter, 
Robinson et al. (1998) reported that the lag time of L. monocytogenes was, on average, 8 times that 
of the mean generation time. The universality of such observations is further suggested by the results 
of Widders, Coates and Ross (unpublished) for spoilage pseudomonads growing on pork meat in 
retail trade. 
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The model developed for predicting growth of E. coli 
on meat takes into account temperature, pH, water 
activity and lactate. The parameters used were pH 
6.5, aW 0.993 and lactate 51.7 mM. The lag phase is 
considered to account for 5 generations of E. coli. 
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3  Model development for chilling of hot boned meat 
 
 
The model currently used has been developed by scientists at University of Tasmania. Previously, 
models for the combined effects of temperature and water activity on E. coli growth rate (Salter et al., 
1998) and for the effects of temperature, pH and lactic acid (Presser et al., 1997) were developed. 
The current model combines terms for high and low temperature, high and low water activity, high 
and low pH and dissociated and undissociated lactic acid to yield a new general model form (Ross et 
al., 2003). 
 
All data used in generation of the model are shown in Appendix 1 which comprises the full text of 
Ross et al., 2003. Data were fitted to a reduced form of the general model as shown 
  √r = c • (T-Tmin) • (1-exp(d•(T-Tmax))) 
   • √(aw-awmin) 
   • √(1-10(pHmin-pH)) • √(1-10(pH-pHmax)) 
   • √(1-[LAC]/(Umin • (1+10(pH-pKa)))) 
   • √(1- [LAC]/(Dmin • (1+10(pKa-pH)))) 
   ±e 
 
where: 
r = relative growth rate or specific growth rate (time-1), c, d and g = fitted parameters 
aw = water activity 
awmin = theoretical minimum water activity below which growth is not possible 
T = temperature, Tmin = theoretical minimum temperature below which growth is not possible 
Tmax = theoretical maximum temperature beyond which growth is not possible 
pH has its usual meaning 
pHmin = theoretical minimum pH below which growth is not possible 
pHmax = theoretical maximum pH beyond which growth is not possible 
[LAC] = lactic acid concentration (mM) 
Umin = minimum concentration (mM) of undissociated lactic acid which prevents growth when all other 
factors are optimal 
Dmin = minimum concentration (mM) of dissociated lactic acid which prevents growth when all other 
factors are optimal 
pKa is the pH for which concentrations of undissociated and dissociated lactic acid are equal, 
reported to be 3.86  
e=error 
 
Fitted parameter values and asymptotic standard errors on those estimates are shown in Table 4. 
Observed and predicted generation times (GT) are compared in Fig. 1, as residuals normalised to the 
observed generation time i.e. (ObservedGT − PredictedGT)

ObservedGT
, as a function of generation time. To 

illustrate the validity of the use of the square root transformation to homogenise variance in the 
relative growth rate data, residuals in this transformation are presented as a function of generation 
time in Fig. 2. 
 
The accuracy and bias factors (Ross, 1996) for the model predictions of generation time compared 
with the original data were 1.21 and 0.97, respectively. These will be discussed below in relation to 
model performance. 

Equation 1 (Budavari, 1989) 
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Table 4: Parameter values for the growth rate model for E. coli 
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Fig. 1. Residuals plot of predictions of Equation 1 with the parameter 
values shown in Table 1 to the observations on which the model is 
based. The residual was divided by the corresponding observed 
generation time to normalise the deviation for the magnitude of the 
response 

 
 
 

Parameter Estimate Asymptotic Standard 
Error 

c 0.2345 0.0083 
Tmin 4.14 0.63 
Tmax 49.55 0.42 
pHmin 3.909 0.031 
pHmax 8.860 0.19 
Umin 10.43 0.52 
Dmin 995.5 106 
aw min 0.9508 0.0004 

d 0.2636 0.038 
Root Mean Square Error (RMSE) 
in √(1/(GT [h])) 

0.0054  
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Fig. 2. Residuals plot for data used to derive the parameter 
values shown in Table 1 for Equation 1b. The observations and 
predictions are expressed as square root of relative rate to test 
the assumption that the square root prediction homogenises 
the variance in the data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The current model combines terms for high and low 
temperature, high and low water activity, high and low pH 
and dissociated and undissociated lactic acid to yield a new 
general model form. 
Details of the model are published in the International 
Journal of Food Microbiology (Ross et al. 2003). 
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4  Performance of the model 
 
 
The successful application of predictive modelling is dependent on the development of appropriate 
models but, prior to their application in industry, a performance evaluation of predictive models under 
conditions that were not used to derive the models is required. There are several ways in which 
model performance can be assessed. These include using sub-sets of the data set from which the 
model is derived, generating new data by laboratory experiments in liquid growth media or direct 
inoculation onto product, comparison to other data in the literature and trials in industry. It is generally 
accepted that comparing predicted responses to observed responses can assess the usefulness of a 
predictive model. Traditionally predictive models have been assessed statistically by the ‘goodness of 
fit’ of the data used to generate them and pictorial comparisons of observed and predicted data. 
Residual plots are also used to identify any non-linearity or non-constant variance in a model. Two 
indices of performance, the bias and accuracy factors (Ross, 1996, Baranyi et al., 1999) are objective 
and quantitative measures that provide a simple means of reporting a readily interpretable 
assessment of model performance.  
 
The bias factor (Bf) indicates systematic over- or under-prediction by a model. Perfect agreement 
between predictions and observations will give a bias factor of 1. Bias factors >1 predict generation 
time longer than observed and thus “fail dangerous” behaviour in the model. Conversely, bias factors 
<1 predict generation time less than observed and thus lead to “fail safe” predictions. As in many 
situations under- and over-predictions will tend to cancel out and the bias factor does not provide an 
indication of the average accuracy of estimates. This is provided by the accuracy factor which 
averages the deviation of each data point from the model’s line of equivalence to measure the 
average ‘distance’ of the predictions from observations. Again a value of 1 indicates perfect 
agreement, whereas a factor of 2 indicates that the prediction is half or twice as large as the 
observation. 
 
The following interpretation of the bias factor to assess model performance for pathogens was 
proposed by Ross, 1999: 

Good:   0.90-1.05 
Acceptable  0.70-0.89 or 1.06-1.15 
Unacceptable:  <0.70->1.15 

 
For the accuracy factor (Af), acceptable performance will depend on the number of parameters in the 
model as the error in growth rate estimates under controlled laboratory conditions is ~10% per 
independent variable (Ross et al., 2000). Thus a model with 3 variables (temperature + pH + water 
activity) might be expected to have an error of ~30% or an accuracy factor of 1.3. 
 
When model performance was evaluated for 1025 growth rate estimates in food, the bias and 
accuracy factors respectively were 0.92 and 1.29 indicating good performance. The UTAS model has 
generally outperformed the Pathogen Modelling Program (PMP) and Food MicroModel (FMM) and 
was particularly good when evaluated for 130 estimates of growth rate in meat with bias and 
accuracy factors of 0.97 and 1.26, respectively. That this was attributed to the inclusion of a term for 
lactic acid concentration in the UTAS model was demonstrated by poorer performance when the 
lactate term was removed i.e. bias factor 0.78 and accuracy factor 1.39. 
 
Predictive model development and evaluation is a process involving continual improvement in model 
performance as more data describing the effects of additional environmental factors are included in 
the model. To illustrate this point, the performance of the new UTAS model was compared with the 
temperature only model of Salter et al. (1998) to describe independent data sets of Gill and Newton 
(1980), Grau (1983) and Smith (1985). The respective improvement in Bf and Af were as follows: 

Data sets Bf/Af using temperature-
only model 

Bf/Af using UTas 
model 

Gill and Newton (1980) 0.43/2.31 0.70/1.43 
Grau (1983) 0.53/1.90 0.72/1.40 
Smith (1985) 0.90/1.18 1.04/1.09 
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A full description of how the performance of the new model was assessed is provided in Appendix 2, 
which comprises the manuscript of Mellefont et al. (2003). 
 
 
 
 
 
 
 

The performance of the model has been evaluated both by 
traditional criteria such as the ‘goodness of fit’ of the data and 
residual plots used to identify any non-linearity or non-
constant variance in a model; in addition, two indices of 
performance, the bias and accuracy factors have been used. 
Full details of performance of the model have been published 
in the International Journal of Food Microbiology (Mellefont et 
al. 2003). 
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5  Validation of the model for predicting growth of E. 
coli during chilling and freezing of hot boned meat 
 
A number of studies have been carried out in which hot boned meat has been inoculated with faeces 
or E. coli broth cultures and cooling followed under commercial conditions. These experiments have 
been done on meat trim in cartons and on chilled primals. The following sections detail the results of 
these trials. 
 

5.1 Meat trim in cartons 
Both sheep and cattle operations were assessed as part of studies carried out at CSIRO Meat 
Research Laboratory by Grau, Shay, Vanderlinde and others. Meat was inoculated with a suspension 
of faeces taken from similar animals slaughtered on the day of the trial. Faeces were diluted in water 
and filtered through cheesecloth before application. Meat was inoculated by brushing the inocula on 
to the surface of meat prior to packing. In all experiments coliform counts only were obtained, it is 
assumed that the majority of the coliform bacteria present were E. coli and in fact when measured E. 
coli usually accounted for >90% of the coliform count.  
 
Samples for bacterial analysis were collected from the inoculated surfaces of meat placed as near to 
the thermal centre of cartons as possible. A sheet of plastic film was placed at the centre of each 
carton (between layers of meat) to allow the inoculated surface to be easily identified after freezing. 
Copper/constantan thermocouples were placed on either side of the plastic over the inoculated sites. 
Temperatures were monitored during cooling and freezing. Room temperatures were also recorded.  
 
E. coli growth was modelled using an equation developed by the University of Tasmania. The 
equation requires input of the temperature history during cooling/freezing, the pH of the growth 
medium, the water activity and the lactate concentration. For meat in this trial the water activity was 
assumed to be 0.993. The lactate concentration in meat is related to the ultimate pH, for consistency 
the pH and lactate concentration were set for all calculations to 6.5 and 51.7 mM, respectively. A 5-
generation lag was assumed before growth occurred. 
 
Temperature histories from each trial were entered into an Excel (Microsoft) spreadsheet 
incorporating the predictive equation developed by the University of Tasmania and the predicted 
increase in E. coli estimated. An example of one of the calculations is given in Fig. 3 (a new 
calculation program has been developed that has a different appearance to figure 3 but makes 
exactly the same calculations). No allowance has been made for bacterial death as a result of 
freezing or of any reduction in E. coli numbers over time during frozen storage. Other models have 
been used to predict the growth of E. coli in meat during freezing; these models give similar predicted 
increases to those obtained using the University of Tasmania model once allowances are made for 
reductions that might occur during freezing. The predicted reductions obtained using the University of 
Tasmania model are compared to those found on inoculated sites in Fig 4. There was good 
agreement between the predicted increases and those found with 84% of the variability accounted for 
by the model (R2=0.836). 
 
On average, the model over predicts by 0.07 Log10 CFU/g, with the average difference between 
predicted and observed growth being 0.54 Log10 CFU/g (accepted by many as the limit of accuracy of 
the plate count technique see Jarvis, 1989). The 95% of the predicted values are <1.5 Log10 CFU/g 
different from the observed values. The largest deviation observed was 1.72 Log10 CFU/g. 
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Fig 3: Calculation of predicted growth in E. coli using an Excel spreadsheet model incorporating the predictive equation. 
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Fig 4: Observed increases (Log10 CFU/g) in coliform bacteria on 
inoculated surface (faecal suspension) of meat in cartons of boxed beef and 
sheep meat frozen under commercial conditions plotted against the 
predicted increase calculated using University of Tasmania model 

 
 
A regression plot of the data showing the 95% confidence interval for the line and the 95% predictive 
interval is given in Fig. 5. When the two observation with large standard residuals were removed 
from the calculation a better fit (R2 =0.89) was obtained (Fig. 6). 
 
Data generated in these trials has some underlying variability. This may be due to the nature of the 
inoculum and the proportion of coliforms present in the faeces used in each experiment. The model 
developed by the University of Tasmania predicts the growth of E. coli and the growth of coliform 
bacteria may not be as well predicted by the model. A better fit can be obtained by using average 
values for the beef trial where zero time data were not collected (R2 =0.9).  
 
 

When the model was validated by trials involving inoculation of 
hot boned meat, there was good agreement between observed 
and predicted growth (R2=0.89) 
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Fig 5: Regression plot of all data showing the line of best fit and its 95% 
confidence interval. The 95% prediction interval is also given 
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Fig 6: Regression plot of data without two unusual observations with large 
residues, showing the line of best fit and its 95% confidence interval. The 
95% prediction interval is also given 
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5.2 Chilled primals 
Growth of mesophilic bacteria on meat is dependent on the temperature, pH and tissue type. 
Salmonella and E. coli grew after only a short lag period, both aerobically and anaerobically, on beef 
fatty tissue and on high pH muscle (pH > 6) at 25 0C (Grau, 1983). During cooling of hot boned meat 
growth of E. coli and Salmonella is more likely on fatty tissue or muscles of high pH than on lean 
tissue of low pH. This could have a large impact on the predicted growth of E. coli on hot boned 
primals during cooling. Growth would be greater when fatty tissue is present at the surface of 
microbiological concern (i.e. the slowest cooling point in the carton) or when the meat has a high pH. 
 
A number of experiments have been done over the past decade in which growth of E. coli was 
measured on lean and fat surfaces of primals (Grau, Shay, Vanderlinde and others, CSIRO Meat 
Research Laboratory). Organisms were inoculated either as broth culture or faecal slurry and the 
progress of cooling monitored by data logging. Bacterial counts were obtained from fatty tissue and 
lean surfaces before and after cooling to <7 0C. Predicted increases in E. coli were calculated using 
Equation 1, with parameters adjusted for low pH lean and high pH fat surfaces. The parameter values 
used in the model are given in Table 5. While these values do not necessarily represent the actual 
values of pH, aW and lactate of the lean and fatty tissue used in the experiments, they are within the 
expected range of these parameters for these tissues and give the best overall fit to the observed 
data and therefore are average values industry can use for evaluating the effect of cooling on E. coli 
growth. Lactate concentrations were estimated based on published data (Grau, 1980; Bendall, 1979; 
Newbold and Scopes, 1967; and Puolanne and Kivikari, 2000). 
 
 

Table 5:  Parameter values used for estimating the growth of E. coli on 
lean and fatty surfaces of vacuum packaged primals during cooling. 

 Low pH lean Fat 
pH 5.4 6.8 
Lactate (mM) 86.5 0 
aW 0.993 0.990 

 
 
Data are presented in Fig 7 for both faecal and broth inocula (with a 5-generation lag). The model 
accounts for 56% of the observed variability in the data. While not as good a fit as obtained with data 
for manufacturing meat it is still a reasonable fit given the underlying variability in the data. From 
experimental work conducted at CSIRO it is known that the pH of meat can vary both from muscle to 
muscle and at different locations within a muscle e.g. a striploin may have pH variability of 0.5 along 
the muscle. It is not practical to account for this variation in pH when applying the model on a day-to-
day basis. 
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Fig 7:  Observed increases (log10 CFU/cm2) in E. coli on inoculated fat 
and lean surfaces (broth and faecal inocula) of hot boned primals during 
cooling. Meat was cooled in an experimental chiller. Predicted increase 
calculated using University of Tasmania model. Solid line is the 
regression line for all points. Open symbols broth culture, closed 
symbols faecal inocula. Squares are results from fatty tissue and 
triangles are from lean surfaces. 

 
 
 
 
 
 
 
 
 
 
 

When the model was validated by trials involving 
inoculation of hot boned boxed meat, there was good 
agreement between observed and predicted growth 
(R2=0.89). When the model was validated by trials involving 
the inoculation of primals, there was reasonable agreement 
between observed and predicted growth (R2= 0.56). 
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6  Predicting meat temperature and the potential for 
pathogen growth on hot boned boxed trim during 
chilling 
 
 
The risk posed by frozen boxed trim will depend, in part, on the amount of growth that occurs during 
chilling. The centre of a carton is the area of microbiological concern. This area may be small in 
relation to the overall size of the carton and therefore may not contribute significantly to the overall 
contamination of comminuted product derived from the trim after cooling.  
 
An investigation was made to estimate the magnitude of growth occurring on trim during a typical 
cooling scenario and the subsequent bacterial load in minced meat 
 
Meat temperatures throughout a carton of boxed beef were estimated using Food Product Modeller 
(FPM)1. Parameters in the model were set to represent a typical carton used by Australian 
manufacturers. The initial meat temperature was set at 31 0C and the cooling conditions simulated 
were -25 0C at an air speed of 3 ms-1. To reduce the complexity of the spreadsheet model, E. coli 
growth was estimated using the CSIRO model. No allowance was made for a lag period prior to 
growth. The temperature history of the thermal centre of the meat is shown in Figure 8. 
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Fig 8: Predicted temperature history for boxed beef during cooling in a freezer operating 
at -25 0C with an air velocity of 3ms-1 

 
 
Temperature histories at 935 locations throughout the carton were modelled and the possible 
proliferation of E. coli estimated (5 x 11 x 17). An example of the calculated E. coli growth in the 
centre portion of the carton is shown in Figure 9. 
 

                                                 
1 Version 2.00.1204. Copyright 1993-2000, MIRINZ Food Technology New Zealand and Meat & Livestock 
Australia 
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Fig 9: Estimated proliferation of E. coli in the central portion of a carton of meat 
during cooling at –25°C 

 
 
The predicted proliferation was less at the surface (Figure 10). 
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Fig 10: Estimated proliferation of E. coli near the surface of a carton of meat during 
cooling at -25 0C 

 
 
It is not possible to get an estimation of the surface temperature using Food Product Modeller. This is 
due to the way that FPM proportionally sets temperature modelling points (or nodes) throughout the 
carton. 
 
By adding the growth predicted at each temperature node and equating this to the weight of meat 
represented by a node and the total weight of met in a carton, it is possible to estimate the overall 
growth of E. coli during cooling. No allowance has been made for any death of E. coli as a result of 
chilling or freezing. In order to estimate the total number of E. coli after cooling it was assumed that 
the starting count was one E. coli per node i.e. 935 E. coli per carton (or 0.03 E. coli per g, since each 
node represents 29g). The estimated number of E. coli in the carton after cooling was 0.87 per g, an 
average increase of 1.4 logs. The maximum increase predicted at any site was 2.3 logs i.e. at the 
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thermal centre. The model cannot estimate surface temperatures due to the proportional allocation of 
nodes throughout the carton. The surface temperature was estimated for the top portion of the carton 
i.e. approximately 3 cm from the surface. The number of nodes that can be assigned is limited by 
computing power. 
 
 
 
 
 
 
 
 
 
 
 
 

Modelling of temperatures throughout a carton of meat during 
cooling demonstrates that the overall increase in E. coli is 
lower than that calculated at the thermal centre   
For a typical carton, growth at the thermal centre of a carton 
was estimated at 2.3 logs while the overall growth was only 
1.4 logs, nearly one-log lower.  
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7  Predicting E. coli growth in chilled primals 
 
There are a number of factors that influence the growth of bacteria on fresh meat. While temperature 
is the dominant controlling factor, intrinsic properties of the meat i.e. pH and water activity are also 
important. The general form of the predictive equation uses average values for pH and water activity 
for bulk packed meat to predict the growth of E. coli at various temperatures. This makes the models 
more ‘user friendly’ but also its applicability to all situations. The temperature used to calculate the 
growth of bacteria is also not representative of the whole product, being the temperature at the 
slowest cooling part of the carton. In effect these factors contribute to the inaccuracy of the model. 
The more a particular product differs from the general model the poorer the prediction obtained using 
the model. 
 
Vacuum packaged primals are an example of a product that does not necessarily conform to the 
parameters used in the general model. Also, this type of product is usually consumed without 
comminuting; therefore contaminating bacteria will be destroyed on cooking. However, in some cases 
whole primals are ground before consumption and this needs to be considered when determining an 
acceptable hot boning index for this type of product. If an entire primal were ground and used for the 
purpose of making patties, the site of microbiological concern is shifted to the centre of the patty, with 
the possibility that pathogens introduced to the centre of the patty from the surface of the primal could 
introduce risk, typically if the patty were undercooked. If it is assumed that the entire carton is ground 
an estimate can be made of the overall increase in E. coli from the contact areas. There are other 
considerations as well. Muscle pH in primals is generally lower than that observed in bulk packed 
meat; therefore growth on exposed lean surfaces will be slower than that predicted using the general 
form of the model. 
 
The following section details a practical example of how the potential risk of E. coli growth on vacuum 
packaged primals can be estimated. The example does not consider the effect of lean surfaces at the 
contact area and this may be something individual plants might like to consider when determining the 
refrigeration index for other products, such as heavily trimmed primals for specific markets. The 
example highlights the key data required for calculating the hot boning index for specific products i.e. 
the contact surface area in relation to the whole surface area and the weight of the primal 
 
The following section details the findings from an investigation of: 
• contact areas of large cuts such as rumps 
• growth of E. coli on contact and non-contact surfaces of primals during cooling 
• the effect of grinding on the overall increase of E. coli 

 
Methodology 
Rumps were selected because they represent large, slow-cooling primal cuts. Before the trial the 
total surface area of a number of rumps was estimated by removing the heat shrink vacuum bags 
and measuring the surface area of the bags. The surface area was then graphed against the weight 
of the primal (Fig 11). The relationship between primal weight and total surface area was used in the 
trial to estimate the surface area of each of the primals. 
  
The cooling of vacuum packaged rumps was followed by locating thermocouples (copper/constantan) 
over contact surfaces and non-contact surfaces of selected cuts (Figs. 12-13). The contact area for 
each cut was estimated visually by sketching onto a piece of paper and then estimating the area with 
the aid of graph paper. Temperature histories were analysed using the model developed by 
researchers at the University of Tasmania. No allowance was made for differences between the pH 
of lean and fat surfaces at the contact area. 
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Fig 11:  Relationship between the surface area and weight of rumps 

 
 
Estimates were made of the predicted growth on all primals within each carton and of the count/g if 
the entire carton were ground. A correlation was made between the maximum HBI (located at the 
slowest cooling point) and the estimated log increase/g in ground primal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 12:  Individually wrapped rumps showing placement of 
thermocouples and contact areas 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 13:  Vacuum packaged rumps showing placement of 
thermocouples and contact areas 
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Results 
Estimation of HBI across the primal surface 
The Hot Boning Index (HBI) for sites across each primal monitored is given in Table 6. Only 
thermocouples located at the top and bottom of the cuts were outside the contact area. HBIs were 
calculated using the general form of the predictive equation (pH 6.5, aW 0.993 and lactate 51.7 mM). 
HBIs at the centre of each contact area were higher than those towards the edge of the contact area. 
At the slowest cooling point (centre) HBIs ranged from 1.5-4.7. At contact points intermediate 
between the centre and periphery HBIs ranged from 1.3-4.3. At the edge of contact HBIs ranged from 
0.1-2.7 and at the bottom (in contact with the carton floor) from 0-1.3. No growth in E. coli was 
predicted at the top of any of the rumps monitored during the trial. 
 
Calculation of E. coli growth at the surface  
The area was estimated of each of the zones listed in Table 6 and multiplied by the E. coli count/cm2 
prior to chilling, assumed to be 1CFU/cm2 (this is a gross overestimation of the contamination but as 
we are only interested in the potential increase the starting count is irrelevant) The total surface area, 
calculated from the weight of each rump was used to estimate the total E. coli loading/carton before 
chilling. Bacterial loadings on each of the five zones listed in Table 6 were added to calculate the 
loading of E. coli/carton after chilling.  
 
 

Table 6: Hot boning index calculated for surfaces on rumps during cooling 
 Predicted log growth at each contact and non-contact point 

Carton Centre Intermediate Edge of contact Bottom and end Top 
1 2.9 2.4 1.4 1.2 0 
2 3.7 3.1 1.1 1.3 0 
3 3.8 3.0 0.6 0.8 0 
4 2.8 2.0 0.2 0 0 
5 4 3.6 0.9 0.5 0 
6 4.7 4.0 1.4 0.5 0 
7 3.7 2.9 0.4 0.3 0 
8 3.3 2.9 1.0 0.5 0 
9 2.6 2.8 2.1 0.5 0 
10 2.6 2.6 2.2 0.5 0 
11 2.7 2.6 2.0 0.2 0 
12 2.3 2.1 1.5 0.4 0 
13 1.5 1.3 0.1 0.1 0 
14 1.9 1.6 0.2 0 0 
15 3.1 3.1 0.9 0 0 
16 3.6 3.0 2.1 0.6 0 
17 4.5 3.2 0.8 0.4 0 
18 4.6 4.3 2.7 0 0 
19 4.4 4.1 2.4 0 0 
20 2.7 2.0 0.4 0.5 0 

 
 
Calculation of E. coli in ground primal  
The total loading of E. coli/carton was converted to a count/g by dividing the total E. coli/carton by the 
weight of product in each carton. This was done both before and after chilling and, when the former 
was subtracted from the latter, it was possible to estimate the predicted increase in E. coli/g during 
chilling (Table 7). Since the initial count was assumed to be 1 CFU/g (log101=0), then the log10 of the 
final count is equal to the HBI. 
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Table 7: Estimated E. coli counts (CFU/g) in ground rumps before and after chilling 

 Log10 E. coli/g 
Carton Before After chilling Increase 

1 -0.45 0.97 1.42 
2 -0.44 1.75 2.19 
3 -0.48 1.54 2.02 
4 -0.47 0.69 1.16 
5 -0.48 2.16 2.64 
6 -0.48 2.53 3.01 
7 -0.47 1.62 2.09 
8 -0.46 1.45 1.90 
9 -0.46 1.21 1.68 
10 -0.45 1.03 1.48 
11 -0.46 1.18 1.63 
12 -0.46 0.65 1.10 
13 -0.47 0.01 0.47 
14 -0.46 0.23 0.69 
15 -0.46 1.39 1.85 
16 -0.43 1.58 2.02 
17 -0.46 2.18 2.65 
18 -0.45 2.86 3.31 
19 -0.48 2.55 3.03 
20 -0.46 0.68 1.14 

 
 
Correlation of maximum HBI and estimated increase in ground primals 
It was possible to draw a correlation between the HBI predicted at the centre of the contact area for 
each carton of rumps and the estimated increase in E. coli count/g if the primals in the carton were 
ground (Figure 12). This correlation only applies to rumps packed and chilled under the conditions of 
the trial. 
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Fig 12: Relationship between centre HBI and estimated E. coli/g if all primals were ground 

 
 
Discussion 
There was a good relationship between the HBI and the predicted increase in E. coli should the entire 
carton be used for the manufacture of ground beef. Allowing for some variability, and the fact that 
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slower growth rates on lean surfaces were ignored, it appears that the HBI calculated at the slowest 
cooling point, overestimates the total growth per g by about 1-log or 10-fold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The actual growth of E. coli on primals is not only a factor 
of the temperature but also the pH of the tissue and the 
surface area at slow cooling points.  
The model indicates that growth will be slower on lean than 
on fatty surfaces. The area of the primal that cools slowly is 
relatively small. 
In a trial on rumps, the average growth of E. coli was 1 
log10 less than predicted by cooling at the slowest cooling 
site. 
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8  In-plant microbiological data  
 
As part of the trial period during which HBIs were calculated for all chillers, plants undertook parallel 
microbiological analysis at the slowest cooling points. For manufacturing meat, this was the surface 
of a piece of trim place deliberately located at the centre of the carton. For primal cuts counts were 
carried out on large primals such as rumps at the slowest cooling point i.e. the centre of the contact 
area between cuts.  
 
In Table 8 are presented summary data for plants A and B which monitored microbiological counts by 
drilling samples from defined sites of frozen manufacturing meat. Product means were log 1.90 and 
2.5/g and prevalence of E. coli 2.0% and 11.5% at plants B and A, respectively. 
 
 

Table 8: Total viable counts (TVC/g) from drilled samples of frozen 
manufacturing meat 

 Log TVC/g E. coli (%) 
 Mean SD Maximum  

Plant A (n=113) 2.50 0.62 4.48 11.5 
Plant B (n=737) 1.90 0.9 4.8 2.0 

 
 
In Table 9 are presented TVCs taken from contact areas of primals after chilling in the carton at 
Plants A and C. Mean log TVC/cm2 was 2.69 at Plant A and 1.47 at Plant C.  
 
Plant C also monitored microbiology of product before and after chilling by sponging contact surfaces 
of large primals (rumps). As indicated in Table 9, for the 100 samples tested, the mean log TVC/cm2 
was 1.08 before chilling and 1.47 after. 
 
 

Table 9: Total viable counts at contact surfaces of primals sampled at 
Plants A and C 

 Log TVC/cm2 E. coli (%) 
 Mean SD Maximum  
Plant A (n=238) 2.69 0.68 5.0 12.6 
Plant C unchilled (n=100) 1.08 0.55 3.23 Not done 
Plant C chilled (n=100) 1.47 0.63 3.32 Not done 

 
 
At Plant C data loggers placed on the area where counts were taken established a mean HBI of 1.1 
with a maximum of 3.8 and minimum of zero. The mean increase in TVC (log 0.39) was less than that 
predicted by the HBI (1.1) which would be due to measuring TVC when the HBI predicts E. coli 
growth and also may be due to the testing of naturally-contaminated sites and that different sites 
were sampled pre- and post-cooling; the main criterion was that samples were taken from the centre 
of the contact area between cuts. 
 
In Plant D, all cuts which had “high” HBIs (>3) were sampled. In Table 10 it can be seen that “worst 
case” counts (large, slow-cooling cuts) had a mean log TVC/cm2 of 2.54, with counts ranging from log 
1.44/cm2 to log 3.40/cm2. E. coli were detected on 2/18 samples (limit of detection 0.25/cm2) with 
both counts being 0.5 cfu/cm2. 
 
 

Table 10: Total viable counts at contact surfaces of large primals which 
had high HBIs sampled at Plant D 

 Mean SD Minimum Maximum 
Log TVC/cm2 (n=18) 2.54 0.66 1.44 3.40 
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At Plant A, microbiological counts were obtained at the thermal centre of naturally-contaminated trim 
located at the slowest cooling point of the carton. After freezing a sample approximately 25cm2 was 
chipped with a sterile chisel and the TVC and E. coli count obtained. As indicated from Table 11, the 
mean TVC was log 2.75/cm2 at the slowest cooling point. E. coli was detected on 19/170 samples, 18 
of which were <50/cm2 and one was 810/cm2. 
 
  

Table 11: Total viable counts at contact surfaces of large primals 
which had high HBIs sampled at Plant A 

 Mean Minimum Maximum 
Log TVC/cm2 (n=170) 2.75 1.44 3.40 

 
 
In-plant chilling data (HBIs) 
Plants routinely monitor rates of chilling by inserting data loggers at the slowest cooling points of 
manufacturing (bulk) meat and primals. In Table 12 is presented summary chilling data for 
manufacturing meat from Plants A and B where the former was able to conform with all three 
performance criteria (mean = 1.5; 80th percentile 2.0; maximum 2.5) while the latter (Plant 
B)conformed except for one logger which exceeded the target maximum of 2.5. 
 
 

Table 12: HBIs for manufacturing meat from Plants A and B 
Plant Samples (n) Mean 80th percentile Maximum 
A 308 0.5 1.0 2.5 
B 39 0.4 0.7 3.0 

 
 
In Table 13 is presented summary chilling data for primals at Plants A-D. HBIs were higher for 
primals than for manufacturing meat, particularly for large primals (e.g. rumps with mass greater than 
6kg). Plant A conformed with all three performance criteria. Plants B-D were able to conform with the 
mean performance criterion (HBI=1.5) but were unable to meet the target maximum (HBI=2.5) or, in 
the case of large primals, with the 80th percentile (HBI=2.0). 
 
 

Table13: HBIs for primals from Plants A-D 
Plant Samples (n) Mean 80th percentile Maximum 
A 29 0.9 1.5 2.4 
B 111 1.0 1.62 3.5 
C* 81 1.4 2.6 5.1 
C* 100 1.5 2.6 3.9 
C 100 1.1 1.9 3.8 
D 37 1.1 2.0 2.9 

*  Only large primals (rumps) surveyed 
 
 

 

 

 

 
 

Plants are able to comply with the HBI, though problems may 
be encountered with large primals. Taken as a whole, these 

“worst case” data reflect low levels of post-chilling 
contamination, even when high HBIs have occurred. 
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9  On-plant operation of the Hot Boning Index 
 
All hot boning plants undertake data logging of manufacturing meat and of primals in order to validate 
that chilling/freezing regimes can conform with the hot boning criteria.  
 
For ongoing verification that the criteria are being met, plants will undertake data logging that reflects 
the range and volume of hot boned products manufactured. That is, both boxed beef and primals will 
be monitored in approximate proportion to volumes manufactured. A calculation tool (based on this 
publication) has been developed that allows selection of products according to whether they are trim 
or primals and, in the latter case, whether they are predominantly lean or have significant fat cover 
e.g. rumps. In this way, over time, continued conformance with the criteria will be verified.  
 
While some products, such as large rumps, may have HBI > 2.5 at the contact area with the next 
primal in the carton, non-contact areas of the cut have HBI=0 (see Table 6). 
 
Plants may apply a risk-based approach to deal with high HBIs. Assessment of risk takes account of 
the fact that: 
• The site of microbiological concern is only a relatively small proportion of the surface area of the 

primal. 
• Primals generally are consumed after a cooking process which destroys pathogens at the 

surface. In such cases the risk of consuming a pathogenic organism is extremely low.  
• Occasionally, large cuts or portions of large cuts may be ground. The site of microbiological 

concern is now altered from surface contamination of the primal to the entire mass of the ground 
product. Should the product be undercooked, the risk is increased, relative to that of the risk 
associated with the intact primal.  

 
A calculation tool (based on this publication) has been developed that may be used for rumps. It 
takes account of the risk associated with ground product by integrating the contact and non-contact 
areas and their respective HBIs to give a modified HBI. This approach may be used with all primals 
and modified to various levels of complexity by dividing primals into areas each of which has an HBI. 
This is the approach taken in Chapter 7. 
 
The risk-based approach may be augmented by microbiological monitoring which will provide further 
evidence of satisfactory control of the process. 
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Abstract

An extended square root-type model describing Escherichia coli growth rate was developed as a function of temperature

(7.63–47.43 jC), water activity (0.951–0.999, adjusted with NaCl), pH (4.02–8.28) and lactic acid concentration (0–500 mM).

The new model, based on 236 growth rate data, combines and extends previously published square root-type models and

incorporates terms for upper and lower limiting temperatures, upper and lower limiting pH, minimum inhibitory concentrations

of dissociated and undissociated lactic acid and lower limiting water activity. A term to describe upper limiting water activity was

developed but could not be fitted to the E. coli data set because of the difficulty of generating data in the super-optimal water

activity range (i.e. >0.998). All data used to generate the model are presented.

The model provides an excellent description of the experimental data.

D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Escherichia coli; Predictive model; Growth rate; Temperature; pH; Lactic acid; Water activity

1. Introduction

The provision of a safe and wholesome food

supply is considered a basic tenet of a developed

nation (McMeekin and Olley, 1995), yet the incidence

of food-borne disease in the developed world is

increasing and new pathogens continue to emerge

(Maurice, 1994). Verocytotoxigenic Escherichia coli

(VTEC) emerged as a serious food-borne threat to

public health in the latter part of the 20th century

(Johnson et al., 1996; Jaeger and Acheson, 2000).

Pathogenic E. coli have been implicated in outbreaks

involving meat products, contaminated recreational

and drinking waters, contaminated vegetables and

fruit juices and visits to farms or fields that have

previously been grazed by cattle. In the majority of

cases, the ultimate sources of the contamination or

infections are believed to be faecal contamination

from ruminants, particularly from cattle or sheep

(Desmarchelier and Grau, 1997; Thorns, 2000).

During commercial slaughter of domestic animals,

it is nearly impossible to guarantee that the carcass

surface is not contaminated with faecal matter. Visual

inspection and removal and carcass washing can

reduce, but not reliably eliminate, contamination.

0168-1605/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.
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Similarly, while decontamination strategies including

acid washes (Smulders and Greer, 1998) and other

methods (Sofos and Smith, 1998) can further reduce

contamination, carcasses free from E. coli contam-

ination cannot be guaranteed. The probability of

human infection is generally considered to increase

with the dose ingested (Coleman and Marks, 1998;

Holcomb et al., 1999). Thus, to develop strategies

to minimise public health risk, it is important to

understand the potential for growth of E. coli on

carcasses during processing, chilling, storage and

distribution.

Temperature strongly influences the potential for,

and rate of, growth of bacteria on carcass surfaces. In

Australia, carcasses are chilled by circulation of cold

air which introduces a second constraint, i.e. water

activity, due to surface drying of the carcass which

can decline to 0.95 and remain at levels below 0.97

for 20–30 h during and after chilling (Lovett, 1978;

Salter, 1998). The pH, and in particular the level of

organic acids (predominantly lactic acid), can also

affect growth potential (Presser et al., 1997, 1998)

with levels in red meat being of the order of 100 mM

(Grau, 1981).

The long history of the use of E. coli as an

experimental organism, its importance as an indicator

organism, and latterly, its emergence as a serious food-

borne pathogen, is reflected in the amount of data

available describing its growth responses to different

environmental conditions. Published kinetic models

for E. coli growth include those of Gill and Phillips

(1990), Heitzer et al. (1991), Buchanan et al. (1993),

Buchanan and Bagi (1994), Rosso et al. (1995),

Sutherland et al. (1995), Kovárová et al. (1996),

Presser et al. (1997), Sutherland et al. (1997) and

Salter et al. (1998). Those models were constructed

using a variety of strains, substrate and environmental

parameters (both constant and varying) but none con-

sider the combined effects of temperature, water activ-

ity, pH and lactic acid concentration, variables that

may be relevant to the prediction of E. coli growth in

meat and on carcasses, particularly under Australian

processing conditions. We describe here the develop-

ment of a new model for the combined effects of

temperature, water activity, pH and lactic acid concen-

tration on the growth rate of E. coli that encompasses

and extends the results and models of Presser et al.

(1997) and Salter et al. (1998).

2. Materials and methods

2.1. Model development

Previously, square root-type models for the com-

bined effects of temperature and water activity on E.

coli growth rate (Salter et al., 1998) and for the effects

of temperature, pH and lactic acid (Presser et al.,

1997) were presented. We combine here the terms

for high and low temperature, high and low water

activity, high and low pH and dissociated and undis-

sociated lactic acid to yield a new general model form,

viz:

ffiffi
r

p
¼ cðT � TminÞð1� expðdðT � TmaxÞÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaw � awminÞ

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� expðgðaw � awmaxÞÞÞ

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10ðpHmin�pHÞÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10ðpH�pHmaxÞÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ½LAC�=ðUminð1þ 10ðpH�pKaÞÞÞÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ½LAC�=ðDminð1þ 10ðpKa�pHÞÞÞÞFe

q

ð1aÞ

where r= relative growth rate or specific growth rate

(time � 1), c, d and g = fitted parameters, aw =water

activity, awmin = theoretical minimum water activity

below which growth is not possible, awmax = theoret-

ical maximum water activity above which growth is

not possible, T= temperature, Tmin = theoretical mini-

mum temperature below which growth is not possible,

Tmax = theoretical maximum temperature beyond

which growth is not possible, pH has its usual mean-

ing, pHmin = theoretical minimum pH below which

growth is not possible, pHmax = theoretical maximum

pH beyond which growth is not possible, [LAC] = lac-

tic acid concentration (mM), Umin =minimum concen-

tration (mM) of undissociated lactic acid which

prevents growth when all other factors are optimal,

Dmin =minimum concentration (mM) of dissociated

lactic acid which prevents growth when all other

factors are optimal, pKa is the pH for which concen-
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trations of undissociated and dissociated lactic acid

are equal, reported to be 3.86 (Budavari, 1989).

2.2. Data generation

Relative growth rate data (i.e. the reciprocal of

generation time [h]), calculated from percent trans-

mittance measurements and fitted to a modified-

Gompertz model as previously described (McMeekin

et al., 1993; Dalgaard et al., 1994), were collated from

several studies including data previously reported by

Salter (1998), Mellefont (2000) and Presser (2001).

Some of these data were modelled by Presser et al.

(1997) and Salter et al. (1998). Presser (2001) pre-

sented 96 data for the effects of temperature (20.88–

22.76 jC), pH (4.02–8.28), water activity (0.986–

0.998) and lactic acid concentration (0–500 mM) on

the relative growth rate of E. coli M23. Similarly,

Salter (1998) presented 96 data for the effect of

temperature (7.63–47.43 jC) and water activity

(0.966–0.997) on relative growth rate of E. coli

M23 at pH 7.4. Relative growth rate data (n= 71)

for the effect of water activity (0.951–0.990) at

temperature 25.2F 0.2 jC and pH 7.4 on E. coli

SB1 was presented by Mellefont (2000). In the latter

study, reported relative growth rates were estimated

from log10(absorbance) data by linear regression of

the transformed data representing the exponential

growth phase. For consistency in this study, data from

Mellefont (2000) were recalculated using the methods

described above after converting the raw data to

percent transmittance (%T) values using the relation-

ship %T= 10(2� absorbance). All data used in generation

of the model are shown in Appendix A.

To homogenise variance in the response variable

(Ratkowsky et al., 1996), the growth rate model (Eq.

(1a)) was fitted to the square root of E. coli relative

Table 1

Parameter values for the growth rate model for E. coli

Parameter Estimate Asymptotic

standard error

c 0.2345 0.0083

Tmin 4.14 0.63

Tmax 49.55 0.42

pHmin 3.909 0.031

pHmax 8.860 0.19

Umin 10.43 0.52

Dmin 995.5 106

awmin 0.9508 0.0004

D 0.2636 0.038

Root mean square error

(RMSE) in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=ðGT ½h�ÞÞ

p 0.0054

Fig. 1. Residuals plot of predictions of Eq. (1b) with the parameter values shown in Table 1 to the observations on which the model is based. The

observations and predictions are expressed as generation times to aid understanding. The residual was divided by the corresponding observed

generation time to normalise the deviation for the magnitude of the response.
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growth rate data (Appendix A) using the SAS non-

linear regression procedure PROC NLIN (SAS Insti-

tute, Cary, NC).

3. Results

For some parameters, convergence could not be

achieved, due to insufficient data describing growth

rates in the regions of interest. Specifically, relative

growth rate data in the super-optimal aw region, i.e.

>0.998, were sparse and precluded reliable estimates

of the parameter awmax. Consequently, data were fitted

to a reduced form of the general model as shown,

below:

ffiffi
r

p
¼ cðT � TminÞð1� expðdðT � TmaxÞÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaw � awminÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10ðpHmin�pHÞÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 10ðpH�pHmaxÞÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ½LAC�=ðUminð1þ 10ðpH�pKaÞÞÞÞ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ½LAC�=ðDminð1þ 10ðpKa�pHÞÞÞÞ

q
Fe

ð1bÞ

where all terms are as previously described.

Fitted parameter values and asymptotic standard

errors on those estimates are shown in Table 1.

Observed and predicted generation times (GT) are

compared in Fig. 1, as residuals normalised to the

observed generation time, i.e. (Observed GT� Pre-

Predicted GT)/(Observed GT), as a function of gen-

eration time. To illustrate the validity of the use of the

square root transformation to homogenise variance in

the relative growth rate data, residuals in this trans-

formation are presented as a function of generation

time in Fig. 2.

The accuracy and bias factors (Ross, 1996) for the

model predictions of generation time compared to the

original data were 1.21 and 0.97, respectively.

4. Discussion

The models of Presser et al. (1997) and Salter et al.

(1998) were originally developed for the application

to prediction of E. coli growth in unprocessed red

meats. The model of Salter et al. (1998) describes the

effect of water activity and temperature on E. coli

growth rate, but does not consider the effect of pH or

acidulant. The model of Presser et al. (1997) has five

terms describing the inhibition of E. coli growth due

to temperature, water activity, pH, the dissociated

form of lactic acid and the undissociated form of

lactic acid. That equation was developed primarily

Fig. 2. Residuals plot for data used to derive the parameter values shown in Table 1 for Eq. (1b). The observations and predictions are expressed

as square root of relative rate to test the assumption that the square root prediction homogenises the variance in the data.
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for use with foods that are acidic to neutral and for

which temperatures are suboptimal for E. coli growth

rate. In both of those models, the amount and range of

water activity data were limited.

Unlike many nations, Australian meat chilling is

based on air cooling, resulting in water activity

decreases at the carcass surface (Lovett, 1978; Salter,

1998) that are sufficient to severely inhibit E. coli

growth rate. To create a model applicable to meat

under Australian processing conditions, data from

these studies were combined and supplemented with

new data (Mellefont, 2000) that describe in detail the

effect of water activity on E. coli growth rate. While

the pH on carcasses during and after chilling is usually

in the pH range 5.4–7.0, the existence of data for

conditions beyond these ranges enabled inclusion in

the model of terms for the super-optimal pH and

temperature ranges resulting in a more complete,

and thus more versatile, model potentially suitable

for application to a wider range of foods.

The accuracy factor (Ross, 1996) for the model

predictions compared to the original data was 1.21.

Ross et al. (2000a,b) proposed that, as a ‘‘rule of

thumb’’, the relative error in generation time or

growth rate estimates under controlled laboratory

conditions is around 10% per independent variable.

The bias factor for a model compared to the data used

to generate it would be expected to be 1.00 (Ross,

1996) unless the model was fitted to a transformation

of the data other than the logarithm of the growth rate

or generation time. In this study, the model was fitted

to square root of rate data and may account for the

bias factor of 0.97. These measures, together with the

small standard errors of parameter estimates and the

low fitting error (see Table 1), indicate that fitted

model describes the data very well. Fig. 1 enables the

fit of the model to the data to be visualised, and

reveals slight, but systematic, lack of fit to the data for

longer generation times, that would lead to the pre-

diction of faster growth than what is observed. The

same pattern of residuals was seen when non-normal-

ised residuals were plotted (data not shown). This

deviation is possibly due to the influence of the single,

outlying, point observed at a water activity of 0.951,

marginally above the estimated awmin of 0.9508. Due

to the form of the model, at conditions very near to the

notional minimal conditions for growth, predicted

generation times are very long, as in this case where

the predicted generation time (209 h) is vastly in

excess of the observed generation time of 14.9 h. It

is possible that other forms of predictive microbiology

model could better describe the data set but, given the

overall quality of fit of the model to the data, we did

not explore this. The full data set used in the model is,

however, presented in Appendix A enabling others to

evaluate the merits of alternative model forms.

The utility of the model can be reliably assessed,

however, only by comparison to independent data not

used to generate the model. Before predictions of the

new model can be compared to the growth rates

reported by other workers, however, it is important

to recognise that systematic differences between

growth rate estimates derived from turbidimetric data

have been reported (Dalgaard et al., 1994). Similarly,

while growth data in predictive microbiology studies

have often been fitted to the modification of the

Gompertz model introduced by Gibson et al. (1987),

microbial growth rate traditionally is determined from

viable count assays by fitting, or estimating the line of

best fit, to the exponential phase of growth (Koch,

1981). It is well documented (Whiting and Cygnar-

owicz-Provost, 1992; Baranyi, 1992; Ross, 1993;

Dalgaard et al., 1994; Membré et al., 1999) that

growth rate estimates derived from fitted Gompertz

functions typically overestimate the calculated expo-

nential growth rate by 10–15%. We consider that

predictive models should provide estimates consistent

with the traditional methods of growth rate determi-

nation and the assumption of exponential growth.

These systematic differences can be accommo-

dated, however, by the inclusion in the fitted model

of simple correction factors. The combined effect of

the above systematic errors on growth rate estimates

is such that the fitted model predicts growth rates that

are f 71% of those that would be estimated from

viable counts by the method of Koch (1981). To

make predictions of the model consistent with esti-

mates by those methods, the constant c in Table 1

should become 0.2790 (i.e. correction for lVC/

l%T= 1.57 (Dalgaard et al., 1994), correction for

lGompertz = 0.9 (see above),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:57� 0:9Þ

p
¼ 1:19 ,

correction to b (Table 1) is 1.19� 0.2345 = 0.279).

The fitted model, after inclusion of this correction

factor, can be considered to be ‘calibrated’ to tradi-

tional methods of growth rate estimation by colony

counts.
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The over-prediction of slow growth rates as men-

tioned above was also noted when comparing the

model predictions to independent data (Mellefont et

al., in press). This resulted in the model having less

accurate, but ‘fail-safe’, predictions for generation

times longer than 5 h with the exception of meats

for which bias and accuracy factors were ‘good’ by

the criteria of Ross et al. (2000a,b) for all generation

times. Interestingly, the same over-prediction of slow

growth rates was also noted by Mellefont et al. (in

press) for two other widely used predictive models for

E. coli growth.

The evaluation of performance of the new, cali-

brated, model is described in detail by Mellefont et al.

(in press) who reported that the model predicted well

1025 growth rate estimates reported in the literature

after poor quality or unrepresentative data were

excluded, with a bias value of 0.92, and an accuracy

factor of 1.29.
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Appendix A. Data set used to create the model

Data source Temperature (jC) aw pH LAC (mM) GT (h) sqrt(1/GT)

Presser (2001) 20.88 0.998 5.00 100 7.3 0.370

20.88 0.997 4.42 25 4.0 0.500

20.92 0.998 5.20 100 3.4 0.542

20.94 0.991 5.57 100 2.1 0.690

20.94 0.991 5.85 100 2.0 0.707

20.94 0.991 7.25 100 2.4 0.645

20.94 0.998 5.41 100 2.1 0.690

20.94 0.998 5.74 100 1.7 0.767

20.94 0.997 4.52 25 3.0 0.577

20.94 0.997 4.57 25 2.3 0.659

20.96 0.998 6.16 100 1.7 0.767

20.96 0.997 6.02 25 1.5 0.816

20.98 0.989 7.53 200 2.8 0.598

20.98 0.989 8.14 200 3.9 0.506

20.98 0.997 5.16 25 1.9 0.725

21.00 0.997 6.73 25 1.6 0.791

21.02 0.991 6.32 100 1.8 0.745

21.08 0.997 4.02 0 7.3 0.370

21.10 0.989 7.10 200 2.6 0.620

21.12 0.991 5.58 100 2.4 0.645

21.12 0.997 4.07 0 3.6 0.527

21.14 0.989 7.86 200 3.0 0.577

21.14 0.997 4.13 0 3.0 0.577

21.18 0.997 4.39 0 2.3 0.659

21.20 0.997 4.56 50 6.4 0.395

21.20 0.997 4.60 0 1.9 0.725

21.22 0.997 4.60 50 5.2 0.439

21.23 0.989 5.77 200 2.9 0.587

21.26 0.997 4.71 50 4.1 0.494

21.26 0.997 5.27 0 1.5 0.816

21.26 0.997 6.88 0 1.4 0.845

21.28 0.986 8.14 500 2.5 0.632

21.30 0.986 7.78 500 2.5 0.632
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Appendix A (continued)

Data source Temperature (jC) aw pH LAC (mM) GT (h) sqrt(1/GT)

Presser (2001) 21.30 0.997 5.08 50 2.0 0.707

21.32 0.989 5.58 200 6.0 0.408

21.32 0.989 6.32 200 2.1 0.690

21.32 0.989 6.72 200 1.6 0.791

21.32 0.989 8.28 200 2.8 0.598

21.38 0.986 6.76 500 7.5 0.365

21.38 0.997 6.13 50 1.4 0.845

21.42 0.989 6.01 200 1.6 0.791

21.56 0.989 7.28 200 2.2 0.674

21.60 0.986 6.86 500 8.1 0.351

21.70 0.989 6.69 200 1.5 0.816

21.70 0.994 5.2 200 6.1 0.405

21.76 0.986 7.75 500 3.1 0.568

21.76 0.994 5.31 200 8.0 0.354

21.82 0.994 5.84 200 1.7 0.767

21.84 0.989 5.65 200 4.3 0.482

21.88 0.986 8.14 500 2.2 0.674

21.94 0.989 6 200 1.5 0.816

21.96 0.991 7.51 100 1.8 0.745

21.96 0.992 5.02 50 2.6 0.620

21.98 0.989 7.45 200 2.3 0.659

22.00 0.994 7.14 0 1.3 0.877

22.02 0.992 6.68 50 1.5 0.816

22.02 0.992 7.21 50 1.6 0.791

22.02 0.994 5.14 0 1.6 0.791

22.04 0.991 5.10 100 6.8 0.383

22.04 0.991 7.10 100 1.5 0.816

22.04 0.994 6.58 0 1.4 0.845

22.06 0.989 6.96 200 1.6 0.791

22.06 0.994 4.27 0 2.7 0.609

22.06 0.994 6.14 0 1.4 0.845

22.08 0.989 5.40 200 5.7 0.419

22.08 0.992 5.56 50 1.8 0.745

22.10 0.989 7.28 200 2.0 0.707

22.10 0.991 6.04 100 1.6 0.791

22.10 0.991 6.94 100 1.5 0.816

22.10 0.992 6.01 50 1.5 0.816

22.10 0.992 7.56 50 1.5 0.816

22.10 0.994 5.86 0 1.4 0.845

22.12 0.989 5.93 200 1.7 0.767

22.12 0.992 4.78 50 3.6 0.527

22.12 0.994 6.15 0 1.3 0.877

22.12 0.994 6.94 0 1.3 0.877

22.16 0.991 6.52 100 1.5 0.816

22.16 0.991 7.19 100 1.5 0.816

22.18 0.992 7.58 50 1.5 0.816

22.18 0.994 4.88 0 1.5 0.816

22.26 0.989 7.78 200 3.8 0.513

22.26 0.992 7.49 50 1.5 0.816

22.26 0.994 7.44 0 1.3 0.877

22.26 0.994 7.60 0 1.3 0.877

22.36 0.991 7.80 100 1.8 0.745

22.38 0.991 7.61 100 1.8 0.745

(continued on next page)

T. Ross et al. / International Journal of Food Microbiology 82 (2003) 33–43 39



Appendix A (continued)

Data source Temperature (jC) aw pH LAC (mM) GT (h) sqrt(1/GT)

Presser (2001) 22.38 0.992 6.10 50 1.5 0.816

22.40 0.989 7.65 200 2.4 0.645

22.44 0.992 5.39 50 1.6 0.791

22.46 0.989 6.25 200 1.5 0.816

22.48 0.994 5.53 0 1.3 0.877

22.50 0.991 5.59 100 1.7 0.767

22.52 0.992 7.78 50 1.5 0.816

22.60 0.989 7.88 200 3.1 0.568

22.62 0.994 7.88 0 1.4 0.845

22.76 0.991 8.00 100 1.8 0.745

Salter (1998) 7.63 0.997 7.40 0 60.5 0.129

10.30 0.997 7.40 0 19.1 0.229

12.03 0.997 7.40 0 9.3 0.328

13.20 0.997 7.40 0 6.6 0.389

14.48 0.997 7.40 0 4.8 0.456

15.00 0.966 7.40 0 17.6 0.238

15.00 0.969 7.40 0 10.7 0.306

15.00 0.972 7.40 0 7.0 0.378

15.00 0.976 7.40 0 5.1 0.443

15.00 0.979 7.40 0 4.2 0.488

15.00 0.982 7.40 0 3.8 0.513

15.00 0.985 7.40 0 3.3 0.550

15.00 0.991 7.40 0 2.9 0.587

15.00 0.994 7.40 0 2.7 0.609

16.03 0.997 7.40 0 3.5 0.535

17.38 0.997 7.40 0 2.7 0.609

18.53 0.997 7.40 0 2.2 0.674

20.00 0.971 7.40 0 5.0 0.447

20.00 0.971 7.40 0 5.8 0.415

20.00 0.974 7.40 0 4.1 0.494

20.00 0.974 7.40 0 4.8 0.456

20.00 0.977 7.40 0 3.0 0.577

20.00 0.977 7.40 0 3.3 0.550

20.00 0.980 7.40 0 2.6 0.620

20.00 0.983 7.40 0 2.0 0.707

20.00 0.983 7.40 0 2.1 0.690

20.00 0.986 7.40 0 1.7 0.767

20.00 0.986 7.40 0 1.9 0.725

20.00 0.988 7.40 0 1.5 0.816

20.00 0.988 7.40 0 1.7 0.767

20.00 0.991 7.40 0 1.5 0.816

20.00 0.991 7.40 0 1.6 0.791

20.00 0.994 7.40 0 1.4 0.845

20.00 0.994 7.40 0 1.5 0.816

20.18 0.997 7.40 0 1.7 0.767

21.50 0.997 7.40 0 1.5 0.816

22.68 0.997 7.40 0 1.2 0.913

24.05 0.997 7.40 0 1.0 1.000

25.00 0.974 7.40 0 2.0 0.707

25.00 0.977 7.40 0 1.6 0.791

25.00 0.980 7.40 0 1.2 0.913

25.00 0.983 7.40 0 1.1 0.953

25.00 0.986 7.40 0 1.0 1.000

25.00 0.988 7.40 0 0.8 1.118
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Appendix A (continued)

Data source Temperature (jC) aw pH LAC (mM) GT (h) sqrt(1/GT)

Salter (1998) 25.00 0.991 7.40 0 0.8 1.118

25.00 0.994 7.40 0 0.8 1.118

25.43 0.997 7.40 0 0.9 1.054

26.70 0.997 7.40 0 0.8 1.118

27.90 0.997 7.40 0 0.6 1.291

29.30 0.997 7.40 0 0.7 1.195

30.00 0.971 7.40 0 1.9 0.725

30.00 0.975 7.40 0 1.6 0.791

30.00 0.978 7.40 0 1.2 0.913

30.00 0.981 7.40 0 0.9 1.054

30.00 0.984 7.40 0 0.9 1.054

30.00 0.987 7.40 0 0.8 1.118

30.00 0.991 7.40 0 0.8 1.118

30.00 0.994 7.40 0 0.8 1.118

30.60 0.997 7.40 0 0.6 1.291

32.08 0.997 7.40 0 0.5 1.414

33.60 0.997 7.40 0 0.5 1.414

34.98 0.997 7.40 0 0.5 1.414

36.70 0.997 7.40 0 0.4 1.581

38.03 0.997 7.40 0 0.4 1.581

40.08 0.997 7.40 0 0.4 1.581

41.85 0.997 7.40 0 0.4 1.581

43.63 0.997 7.40 0 0.4 1.581

45.55 0.997 7.40 0 0.5 1.414

47.43 0.997 7.40 0 1.3 0.877

Mellefont (2000) 25.20 0.999 7.40 0 0.9 1.054

25.20 0.995 7.40 0 0.8 1.118

25.20 0.991 7.40 0 0.9 1.054

25.20 0.988 7.40 0 1.0 1.000

25.30 0.984 7.40 0 1.1 0.953

25.30 0.980 7.40 0 1.3 0.877

25.30 0.976 7.40 0 1.5 0.816

25.30 0.972 7.40 0 1.8 0.745

25.30 0.969 7.40 0 2.4 0.645

25.30 0.965 7.40 0 4.0 0.500

25.40 0.961 7.40 0 8.9 0.335

25.40 0.998 7.40 0 0.9 1.054

25.40 0.995 7.40 0 0.8 1.118

25.40 0.991 7.40 0 1.0 1.000

25.40 0.987 7.40 0 1.0 1.000

25.40 0.984 7.40 0 1.1 0.953

25.40 0.980 7.40 0 1.3 0.877

25.40 0.976 7.40 0 1.5 0.816

25.40 0.973 7.40 0 1.8 0.745

25.40 0.969 7.40 0 2.4 0.645

25.40 0.965 7.40 0 2.9 0.587

25.40 0.962 7.40 0 4.1 0.494

25.40 0.958 7.40 0 6.8 0.383

25.20 0.997 7.40 0 0.9 1.054

25.20 0.994 7.40 0 1.0 1.000

25.20 0.990 7.40 0 1.0 1.000

25.20 0.986 7.40 0 1.1 0.953

25.30 0.983 7.40 0 1.4 0.845

(continued on next page)
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Abstract

A square root-type model for Escherichia coli growth in response to temperature, water activity, pH and lactic acid was

developed by Ross et al. [Int. J. Food Microbiol. (submitted for publication).]. Predicted generation times from the model were

compared to the literature data using bias and accuracy factors, graphical comparisons and plots of residuals for data obtained

from both liquid growth media and foods. The model predicted well for 1025 growth rate estimates reported in the literature

after poor quality or unrepresentative data (n = 215) was excluded, with a bias factor of 0.92, and an accuracy factor of 1.29. In a

detailed comparison to two other predictive modes for E. coli growth, Pathogen Modeling Program (PMP) and Food

MicroModel (FMM), the new model generally performed better. The new model consistently gave better predictions than the

other models at generation times V 5 h. Inclusion of the lactic acid term in the model is proposed to account for the consistently

good performance of the model for comparisons to growth in meat, a parameter that is not explicitly included in the other

models considered in the comparisons.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Despite the advent of rapid genetic and immuno-

logical techniques for detecting foodborne pathogens

such as Escherichia coli O157:H7, assessment of the

microbiological quality and safety of foods is usually

a retrospective process and is therefore only partially

effective in protecting consumers from foodborne

hazards. An approach with predictive value is

required. Thus, predictive modelling has developed

as an adjunct to traditional microbiological techni-

ques. Essentially, the survival and/or growth of an

organism of concern may be predicted on the basis of

a mathematical relationship between microbial growth

rate and environmental conditions (McMeekin et al.,

1993). A number of environmental factors influence
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the growth, death and survival of microorganisms.

While it is desirable to include in predictive models all

factors that influence bacterial responses, in many

situations, this is not practical. To develop an appro-

priate predictive model, it is necessary to include, as

independent variables, those factors which are meas-

urable and are relevant to the food and the conditions

it is likely to encounter from the place of manufacture

through to its final preparation and consumption.

Temperature, water activity (aw) and pH, modified

primarily by lactic acid (Grau, 1981), are considered

to have the predominant influence on microbial

growth in fresh meats (Nottingham, 1982).

The successful application of predictive modelling

is dependent on the development of appropriate mod-

els but, prior to their application in industry, a per-

formance evaluation of predictive models under novel

conditions that were not used to derive the models is

required. There are several ways in which model

performance can be assessed. These include using

sub-sets of the data set from which the model is

derived, generating new data by either laboratory

experiments in liquid growth media or direct inocu-

lation into product, comparison to other data in the

literature and trials in industry. It is generally accepted

that comparing predicted responses to observed

responses can assess the usefulness of a predictive

model. Traditionally predictive models have been

assessed statistically by the ‘goodness of fit’ of the

data used to generate them and pictorial comparisons

of observed and predicted data. Residual plots are also

used to identify any non-linearity or non-constant

variance in a model. Two indices of performance,

the bias and accuracy factors (Ross, 1996; Baranyi et

al., 1999), are objective and quantitative measures that

provide a simple means of reporting a readily inter-

pretable assessment of model performance.

It is interesting to note the interpretation of the term

‘validation’ in the literature by authors reporting on

model performance. The term evaluation, i.e. to

assess, is often more appropriate than validation, i.e.

to make valid or confirm, as many predictive models

are never investigated in the production environment.

Neumeyer et al. (1997) referred to their work on

pseudomonad growth as a validation; industry trials

were performed in addition to laboratory and literature

performance evaluations. In comparison, Dalgaard

and Jørgensen (1998) conducted seafood challenge

tests only and referred to their comparisons as evalua-

tions. Similarly, Miles et al. (1997) referred to their

literature comparison as an evaluation. Despite that

they applied no objective criteria, Walls and Scott

(1996) entitled their work on challenge tests in raw

ground beef as a validation. As a comparison to the

literature data forms the basis of the assessment of the

model of Ross et al. (submitted for publication) in this

study, the use of the term ‘performance evaluation’ is

preferred.

A complete performance evaluation of a model

encompassing all combinations of factors affecting

microbial growth is an enormous undertaking and, for

models including many variables, an impractical one.

The work required to test all variable combinations is

immense, even if it entailed the examination of only

one or two variables (e.g. pH and temperature).

Extending the performance evaluation process to food

matrices magnifies the task further, as well as provid-

ing potential complications in application of the test

organism, adjusting independent variables in non-

homogeneous matrices, the presence of other spoilage

microbiota as well as logistical problems with enu-

meration techniques. An approach that allows an

efficient examination of many variables without

unreasonable demands on time and resources is

required. Collation of literature data permits specific

research questions to be answered without recourse to

novel experiments, a strategy significantly more effi-

cient than generating data de novo. Evaluating model

performance by comparison to published data is an

easier, and perhaps more robust, approach and also

identifies ‘‘gaps’’ in the literature.

In this study, the performance of a new square root-

type model for E. coli growth (Ross et al., submitted

for publication) which incorporates parameters rele-

vant to unprocessed meat products is assessed by a

comparison of model predictions to published data for

growth of E. coli in liquid growth media and foods.

The performance of the model is also compared with

two E. coli growth models included in Food Micro-

Model (FMM) and Pathogen Modeling Program Ver-

sion 5.0 (PMP). FMM and PMP are software

packages containing a range of predictive models that

can estimate the effects of multiple variables on the

growth and survival of foodborne pathogens. PMP is

provided free of charge by the Microbiological Food

Safety Research Unit of the United States Department
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of Agriculture (USDA) and can be downloaded from:

http://www.arserrc.gov/mfs/pathogen.htm. FMM is

available for an annual fee from the Leatherhead Food

Research Association, Surrey, England.

2. Materials and methods

2.1. Growth model

The square root-type model presented in Ross et al.

(submitted for publication) contains terms describing

the inhibition of E. coli growth due to temperature,

water activity, pH, the dissociated form of lactic acid

and the undissociated form of lactic acid. The fitted

model is:

Mr ¼ 0:2790� ððT � 4:14Þ � ð1� expð0:2636
� ðT � 49:55ÞÞÞ �Mðaw � 0:9508Þ
�Mð1� 10ð3:909�pHÞÞ �Mð1� 10ðpH�8:860ÞÞ
�Mð1� ½LAC�=10:433Þ � ð1þ 10ðpH�3:86ÞÞ
�Mð1� ð½LAC�=ð995:509
� ð1þ 10ð3:86�pHÞÞÞÞÞÞF0:0054 ð1Þ

where: r = relative growth rate (1/generation time (h)),

T= temperature (jC), aw =water activity, [LAC] = lac-
tic acid concentration (mM).

2.2. Novel data collation

A comprehensive search of the literature for

growth rate and generation or doubling time data for

E. coli was performed and the data collated in com-

puter spreadsheets. A total of 39 independent sources

(35 publications, 2 personal communications and 2

novel data sets (Mellefont, 2000)) were identified.

The number of growth rate data from each source

ranged from 1 to 281. In sources where growth rates/

generation times were not tabulated or specified,

values were estimated from enlarged copies of graphs

by linear regression of data derived from the graphs. If

the report did not specify values for lactic acid

concentration, pH or aw, they were obtained from

the other literature sources or estimated by compar-

ison with analogous foods. Lactic acid concentrations

were estimated for meat data from the values of Grau

(1981). The aw and pH values of laboratory media

were derived from Chirife et al. (1982) and Atlas

(1993). Percent NaCl values in Atlas (1993) were

converted to aw using the tables of Chirife and Resnik

(1984). Details of the source, growth conditions and

strains used for each of the published data sets are

presented in Tables 1 and 2.

To prevent misleading assessment of model per-

formance by comparison to poor quality or unrepre-

sentative data, the collated literature data were

subdivided into an edited data set. Data were excluded

if:

	 the growth media used could retard growth, e.g.

minimal media or media containing antibiotics;
	 in the case of complex laboratory media, if

anaerobic conditions for growth were deliberately

employed (data from potentially anaerobic foods

were included);
	 in the absence of tabulated data, there were

insufficient data points for linear regression

analysis for generation time estimation;
	 in the case of foods, there were parameters not

included in the predictive models that may exert an

effect, e.g. modified atmosphere packaging, and

growth data were generated under conditions

beyond the range of variables used to create the

model.

Eq. (1) is based on data in the ranges: 7.6–47.4 jC,
aw 0.951–0.999, pH 4.02–8.28 and lactic acid in the

range 0–500 mM. PMP model limits are 8.9–42 jC,
aw 0.970–0.997 and pH 4.5–8.5. For FMM, the

model limits are 10–30 jC, aw 0.960–1.000 and

pH 4.5–7.5.

2.3. Observed vs. predicted comparisons

The bias factor (Bf) is a measure of the relative

average deviation of predicted and observed genera-

tion times and is expressed as the antilogarithm of the

average of the logarithm of the ratio between the

predicted and observed generation times:

where GTpredicted = predicted generation time,

GTobserved = observed generation time and n is the

Bf ¼ 10

�P
logðGTpredicted=GTobservedÞ=n

�
ð2Þ
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Table 1

Bias and accuracy factors for comparison of predicted generation times for E. coli (Eq. (1)) to published growth data in liquid growth media

Source: liquid media n Temperature pH [LAC] aw Bias Accuracy E. coli strain Environment

Barber (1908) 218 10 to 46.8 7.4 0 0.997 0.86 1.17 Bacillus coli Beef peptone broth

Barber (1908) 24 30.1 to 43.8 7.4 0 0.997 0.83 1.21 Bacillus coli Beef peptone broth

Barber (1908) 32 30 to 37.5 7.4 0 0.997 0.87 1.15 Bacillus coli Beef peptone broth

Bernaerts et al. (2000) 8 15 and 35 7.4 0 0.993 0.71 1.52 MG1655

(wild type

KIZ strain)

BHI

Buchanan and

Bagi (1997)

4 12 to 28 5.5 to 7.5 0 0.987 1.55 1.55 O157:H7 933 BHI (adjusted with

NaCl,10N HCl

or 50% KOH)

Buchanan and

Klawitter (1992)

58 10 to 42 4.5 to 8.5 0 0.957 to

0.987

1.38 1.68 O157:H7

cocktail

BHI (adjusted with NaCl,

10N HCl or 50% KOH)

Buchanan et al.

(1993)

1 12 6.5 0 0.987 1.22 1.22 O157:H7

cocktail

BHI (adjusted with NaCl,

10N HCl or 50% KOH)

Demetz and Dantigny

(2000)

14 14 to 39 7.3 0 0.995 1.01 1.22 TGI TSB

Doyle and

Schoeni (1984)

8 25 to 44.5 7.3 0 0.995 0.43 2.33 O157:H7-932 TSB

Eustace

(personal commu-

nication, 1998)

5 8 to 37 7.3 0 0.995 0.92 1.16 NCTC 9001-

non-pathogenic

TSB

Fratamico et al.

(1997)

6 37 7 0 0.997 0.82 1.23 O157 cocktail LB

Gill and Phillips

(1985)

11 7.7 to 46 7.4 0 0.993 0.65 1.53 K12 ATCC

23716

BHI

Gill and Phillips

(1985)

8 10 to 42.3 7.4 0 0.964 0.81 1.25 K12 ATCC

23716

BHI + 5% NaCl

Glass et al. (1992) 5 37 7.3 0 0.954 to

0.991

0.54 1.85 O157:H7

cocktail

TSB

Glass et al. (1992) 7 37 4.5 to 7.3 0 0.995 0.66 1.52 O157:H7

cocktail

TSB (adjusted with HCl)

Ingraham (1958) 20 8 to 46 7.3 0 0.995 0.62 1.63 K12 TSB

Jason (1983) 2 37 6.5 0 0.996 1.00 1.02 NCIB 9132 BrothV
Jennison (1935) 10 22 to 42 7.4 0 0.997 0.75 1.34 Not stated NB

Kauppi et al.

(1996)

20 8.5 to 12 7.4 0 0.995 1.06 1.21 O157:H7 BHI

Kauppi et al.

(1996)

16 8.5 to 12 7.3 0 0.993 0.72 1.52 O157:H7,

0104:H21,

O22:H8,

0111:NM

TSB

Lowry et al.

(1989)

7 8.19 to 40 5.5 130 0.993 1.41 1.41 from chilled

sheep livers

Synthetic Meat

Medium

Maxcy and Liewen

(1989)

5 10 to 30 7.2 0 0.998 0.76 1.32 Not stated m-Plate Count

Broth

Mellefont (2000) 46 9.9 to 45.5 7.47 0 0.995 0.89 1.15 SB1-non-

pathogenic

NB

Palumbo et al.

(1995)

3 10 to 37 7.4 0 0.993 0.95 1.23 O157:H7-

A9124-1

BHI

Rajkowski and

Marmer (1995)

46 8 to 28 5 to 7 0 0.977 to

0.991

0.99 1.46 O157:H7

cocktail

BHI

Salter (1998) 256 7.7 to 47.2 7.4 0 0.997 1.02 1.22 9 STEC

strains

NB

Smith (1995) 1 25 7.4 0 0.997 0.89 1.13 SF (sheep feces) NB
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number of observations used in the calculation

(Ross, 1996). Careful interpretation of the bias

factor is required. A bias factor of 1 indicates

perfect agreement between observed and predicted

generation times, however, under- and over-predic-

tion will tend to ‘cancel out’ in this measure

because the logarithm of the ratios will have

opposite signs. Therefore, a bias factor of 1 is

interpreted as indicating no systematic over- or

under-prediction. A bias factor < 1 indicates the

model usually predicts generation times shorter than

observed and a bias factor >1 that the model

predicts generation times longer than observed.

Under-prediction, i.e. Bf < 1, may be regarded as

‘fail-safe’ and an over-prediction, i.e. Bf>1, as ‘fail-

dangerous’. Judgment must be exercised when

assessing a model by this index because a low

bias factor (i.e. < 1), while indicating the model is

‘fail-safe’, also suggests a level of conservatism that

may render the model not practically useful.

The accuracy factor (Af):

Af ¼ 10

�P
AlogðGTpredicted=GTobservedÞA=n

�
ð3Þ

where the terms are as previously defined, provides an

indication of the spread of the results about the

predicted value (Ross, 1996). An accuracy factor of

1 represents perfect agreement between observed and

predicted values. The larger than 1 the value is, the

less accurate the average estimate is between observed

and predicted generation times.

Generation times from the collated literature data

were compared to generation times predicted by Eq.

(1), FMM and PMP using:

i) the bias and accuracy factors described by Eqs. (2)

and (3);

ii) graphing log(GTobserved) vs. log(GTpredicted), and

iii) plotting the residuals (Mrobserved�Mrpredicted)

against Mrpredicted.

3. Results

Generation time values of 1240 for growth of

pathogenic and non-pathogenic E. coli in liquid media

and foods were collated. These data were edited

according to the criteria described above to a data

set comprising 1025 growth rate estimates. The edited

data were separated into categories of data from

studies in complex laboratory media (Table 1,

n= 847) and food (Table 2, n = 178). The food cat-

egory was further separated to meat only (n = 130) and

‘other foods’ (n = 48). Despite that Eq. (1) was gen-

erated in an aerobic broth system, anaerobic data were

included in the analyses of the food category because

of the relative paucity of food data and because it was

not possible to quantify the degree of oxygen limi-

tation. Anaerobic conditions would reduce the growth

rate, likely leading to conservative or ‘fail-safe’ pre-

dictions of the models. In evaluating the model’s

performance, this was considered to be an acceptable

compromise.

3.1. Graphical comparisons

The predicted values from Eq. (1) are compared to

the corresponding ‘‘observed’’ literature values in

Fig. 1 for ‘media’, and Fig. 2 for ‘meat’ and ‘other

foods’. Boundaries encompassing 90% of the data

have been denoted with dotted lines. Much of the

literature data for ‘media’ falls near the line of

equivalence, i.e. where observed and predicted val-

ues are in perfect agreement. There are fewer points

in the ‘fail-dangerous’ area, i.e. above the line of

equivalence, and 26 data fall outside the 90th per-

Source: liquid media n Temperature pH [LAC] aw Bias Accuracy E. coli strain Environment

Smith (1995) 1 25 7.4 0 0.997 0.89 1.13 SF (sheep feces) NB Mg++

(NB+ 5� 103 M MgSO4)

Sutherland et al.

(1995)

5 10 to 30 4.49 to 6.97 0 0.954 to

0.991

1.13 1.52 O157:H7

cocktail

TSB

Total 847

Table 1 (continued)
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centile. In the most extreme case, the difference

between the observed and predicted generation time

is a factor of 6.9 (Fig. 1). At longer generation times,

the model predictions, while ‘fail-safe’ on average,

appear to be too conservative. For ‘meat’, much of

the literature data falls near the line of equivalence

(as is reflected in the lower Af value), and most of

the points are closer than that observed for growth in

Table 2

Bias and accuracy factors for comparison of predicted generation times for E coli (Eq. (1)) to published growth data in foods

Source: food n Temperature pH [LAC] aw Bias Accuracy E. coli strain Environment

Buchanan et al. (1993) 1 42 5.9 0 0.98 0.92 1.08 O157:H7 933 Canned tuna

Buchanan et al. (1993) 1 12 6.6 0 0.992 0.52 1.93 O157:H7 933 Canned dogfood

Buchanan et al. (1993) 1 28 6 0 0.976 1.34 1.34 O157:H7 933 Chicken broth

Buchanan et al. (1993) 1 19 6.5 0 0.985 0.80 1.25 O157:H7 933 UHT milk

Gill and de Lacy (1991)a 6 8 to 30 6.5 85 0.997 1.07 1.48 E10 from offal High pH beef

(striploin steaks)

Gill and Newton (1980) 2 20 and 30 5.5 130 0.997 0.76 1.32 Not stated Meat slices

Gill and Newton (1980) 2 20 and 30 5.5 130 0.997 0.65 1.53 Not stated Meat slices

Gill and Newton (1980) 9 20 and 30 5.5 130 0.997 0.78 1.43 Not stated Meat slices +

non-pathogenic

psychrotrophs

Gill and Newton (1980)a 4 30 5.5 130 0.997 0.65 1.53 Not stated Meat slices +

non-pathogenic

psychrotrophs

Grau (1983) 10 25 5.6 to

6.91

80 0.99 0.72 1.40 from sheep feces Beef-thin layers of

lean mince

Grau (1983) 1 25 5.6 130 0.997 1.35 1.35 from sheep feces Fatty tissue

Grau (1983)a 8 25 5.5 to

6.79

80 0.99 0.93 1.33 from sheep feces Beef-lean pieces

Grau (1983)a 1 25 5.6 130 0.997 1.35 1.35 from sheep feces Fatty tissue

Kauppi et al. (1996) 14 8.5 to 12 7.2 0 0.986 0.91 1.18 O157:H7, 0104:H21,

O22:H8, 0111:NM

Autoclaved

whole milk

Mellefont (2000) 4 10 to 20 6 100 0.997 1.20 1.27 SR M23

(streptomycin

resistant)

Sterile raw

ground beef

Mellefont (2000) 3 10 to 20 6 100 0.997 0.87 1.15 SR M23

(streptomycin

resistant)

Low background

flora ground beef

Palumbo et al. (1997) 13 8 to 37 7.2 0 0.997 0.54 1.92 O157 cocktail UHT-pasteurized milk

Palumbo et al. (1997) 4 12 and 15 7.2 0 0.997 0.53 1.90 O157 cocktail Low background

flora pasteurized milk

Palumbo et al. (1997) 3 12 7.2 0 0.997 0.64 1.57 O157 cocktail High background flora

pasteurized milk

Palumbo et al. (1997) 6 12 and 15 5.8 100 0.997 0.60 1.68 O157 cocktail Irradiated ground beef

(Initial 103 TVC)

Smith (1985) 1 8.2 6 85 0.997 1.15 1.15 SF Raw blended mutton

Smith (personal

communication)

67 10 to 40 6 85 0.997 1.10 1.16 SF Raw blended mutton

Walls and Scott (1996) 6 12 to 35 5.7 to

6.4

85 to

130

0.997 1.05 1.11 O157:H7 cocktail Raw ground beef

(pH adjusted with

3N NaOH)

Wang et al. (1997) 10 8 to 22 6.9 to

7.1

0 0.997 0.65 1.54 O157:H7 cocktail Unpasteurised milk

Total 178

a Anaerobic growth conditions applied.
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‘media’. In comparison, the points for ‘other foods’

generally fall below the line of equivalence. For

outliers in the food categories, the difference between

observed and predicted generation times is smaller

than those for ‘media’, with a maximum difference

of 1.4 (Fig. 2). The residuals plot (Fig. 3) for all the

‘edited’ literature data compared to predictions from

Eq. (1) shows little systematic deviation between

observations and predictions, although the degree

of scatter is slightly wider at faster generation times

(Fig. 2).

3.2. Bias and accuracy

Eq. (1) performed better, as assessed by the bias

and accuracy indices, than PMP and FMM for

Fig. 1. Log(GTobserved) vs. log(GTpredicted) for the growth responses of E. coli reported in the published literature for ‘media’ and predictions

from Eq. (1).

Fig. 2. Log(GTobserved) vs. log(GTpredicted) for the growth responses of E. coli reported in the published literature and predictions from Eq. (1)

where: . = ‘meat’ and D= ‘other foods’.

L.A. Mellefont et al. / International Journal of Food Microbiology 82 (2003) 45–58 51



most of the data groups (Table 3). However, when

the food category was divided into ‘meat’ and

‘other foods’, Eq. (1) performed best for ‘meat’

and FMM for ‘other foods’. Foods other than meat

consisted primarily of milk products. For this

category only, FMM out-performed Eq. (1) for

each of the performance indices. For the unedited

data set, FMM had a lower bias factor than Eq.

(1). The bias and accuracy indices for PMP were

close to those of Eq. (1) for most data sets except

‘other foods’.

To investigate whether the models’ performance

is better under some sets of growth conditions than

others (e.g. ‘harsh’ vs. near optimal), generation

time data were grouped into categories of:

	 GTobserved < 1 h,
	 GTobserved1–5 h, and
	 GTobserved>5 h,

based on the assumption that harsh conditions are

associated with longer generation times. Bias and

accuracy factors were calculated (Table 4).

Fig. 3. The residual plot of (Mrobserved�Mrpredicted) against Mrpredicted for comparison of the growth responses of E. coli reported in the

published literature (edited data set, n= 1025) and predictions from Eq. (1).

Table 3

Bias and accuracy factors for growth of E. coli with data collated

from the literature compared to Eq. (1), Pathogen Modeling

Program and Food MicroModel (best bias and accuracy marked

in bold)

Category Eq. (1) PMP FMM

n Bf Af n Bf Af n Bf Af

All-unedited 1240 0.85 1.42 901 0.81 1.39 631 1.07 1.55

All-edited 1025 0.92 1.29 824 0.87 1.30 523 1.16 1.47

Media 847 0.93 1.28 664 0.91 1.28 387 1.34 1.47

All food 178 0.86 1.36 160 0.73 1.42 136 0.77 1.47

Meat 130 0.97 1.26 128 0.80 1.30 110 0.75 1.52

Other foods 48 0.63 1.68 32 0.50 2.01 26 0.84 1.29

Table 4

Bias and accuracy factors for generation time sub-sets of edited data

for the growth of E. coli obtained from the literature compared to

Eq. (1), Pathogen Modeling Program and Food MicroModel (best

bias and accuracy marked in bold)

Category GT Eq. (1) PMP FMM
(h)

n Bf Af n Bf Af n Bf Af

All-edited < 1 612 0.97 1.20 503 0.95 1.20 204 1.21 1.41

1–5 254 0.92 1.38 217 0.85 1.39 228 1.17 1.57

>5 159 0.76 1.56 104 0.61 1.70 91 1.03 1.39

Media < 1 561 0.96 1.20 454 0.95 1.20 172 1.33 1.41

1–5 171 0.99 1.35 135 0.97 1.32 149 1.48 1.51

>5 115 0.74 1.57 75 0.61 1.70 66 1.09 1.39

All food < 1 51 1.05 1.11 49 0.93 1.15 32 0.74 1.38

1–5 83 0.78 1.45 82 0.68 1.52 79 0.75 1.46

>5 44 0.82 1.54 29 0.60 1.69 25 0.89 1.39

Meat < 1 49 1.05 1.11 49 0.93 1.15 31 0.72 1.38

1–5 64 0.88 1.31 64 0.74 1.39 64 0.72 1.60

>5 17 1.09 1.57 15 0.68 1.50 15 0.98 1.46

Other < 1 2 1.11 1.01 1 1.36 1.01 0

foods 1–5 18 0.49 2.03 17 0.46 2.18 14 0.83 1.26

>5 28 0.71 1.52 15 0.55 1.84 11 0.82 1.32
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Eq. (1) consistently performed best for generation

times in the < 1- and 1- to 5-h categories. The ‘other

foods’ category was the exception, with poorer bias

and accuracy factors for the 1- to 5-h category. For

‘meat’, Eq. (1) had a similar bias factor for each

generation time category, although the accuracy fac-

tor deteriorated with increasing generation time. The

best predictions for PMP were for the < 1-h category.

For ‘media’ data, PMP had similar bias and accuracy

factors to Eq. (1) for the < 1- and 1- to 5-h catego-

ries. Bias and accuracy factors deteriorated with

increasing generation time for all categories. For

FMM, the best bias factors were generally in the

>5-h group with the exception of the ‘other foods’

category for which the best bias factor was observed

in the 1–5-h group. Except for the < 1-h category for

‘other foods’ (in which there was only one observa-

tion), accuracy factors were all higher than 1.27. The

poorest accuracy factors for each category were

found in the 1- to 5-h group. These outcomes are

summarised in Table 3.

Overall, Eq. (1) appeared to predict better at gen-

eration times < 5 h. PMP predicted well for the < 1-h

category, with bias and accuracy factors often similar

to those for Eq. (1). FMM was consistently more

accurate for generation times >5 h.

4. Discussion

Although graphical methods were used in this

study to assess model performance, the basis of the

evaluation of Eq. (1) was calculation of the bias and

accuracy factors. While there are no agreed criteria by

which a model can be said to have acceptable per-

formance, i.e. to be ‘validated’, since the introduction

of the bias and accuracy factors, several authors have

suggested critical values of those indices that allow

their interpretation for model validation, as discussed

below.

The significance of the magnitude of the bias factor

depends on the amount of growth that occurs, and is

therefore dependent on whether the model being

assessed is a model for spoilage or growth of patho-

genic organisms. For example, if the bias factor were

0.9 and considering that the error in any viable count

method is approximately F 0.3 log cfu (Jarvis, 1989),

differences between observed and predicted growth

would not be measurable unless more than three log

cycles of growth had occurred (i.e. 10% of 3 = 0.3).

From a shelf-life perspective, such an increase may be

acceptable. However, for proliferation of pathogens

with low infective doses, such an increase would be

unacceptable. Thus, the bias factor must be interpreted

in a manner consistent with the situation in which the

predictive model is likely to be utilised. Dalgaard

(2000) suggested that a Bf in the range 0.75–1.25

indicates a successful evaluation of seafood spoilage

models. Ross (1999) considered that for pathogens

less tolerance should be allowed for bias factors >1 as

they would lead to under-predictions of growth, and

are thus ‘fail-dangerous’ predictions. He proposed the

following interpretation of the bias factor when used

for model performance evaluations involving patho-

gens:

	 0.90–1.05 can be considered good;
	 0.70–0.90 or 1.06–1.15 can be considered accept-

able;
	 < 0.70 or >1.15 should be considered unaccept-

able.

The error in growth rate estimates under controlled

laboratory conditions is estimated to be around 10%

per independent variable (Ross et al., 2000). Those

authors proposed that as a ‘rule of thumb’, each

environmental variable in a model is expected to

add a similar amount of relative error. Thus, an

acceptable accuracy factor can be determined by

considering the effect of the number of environmental

parameters in a kinetic model. For example, the best

performance that might be expected from a kinetic

model encompassing the effect of temperature, pH

and aw on growth rate, is f 30%, or an accuracy

factor of 1.3.

Normal experimental error and biological variabil-

ity contribute to variation in results derived from

experiments conducted by the researcher undertaking

the evaluation, and are reflected in the accuracy factor.

It is likely that this variability will be significantly

larger when using data other than that used to generate

the model and, in particular, data independent of the

investigator’s laboratory, methods and experimental

strains. Ross (1996) observed that model accuracy

decreased as the degree of experimental control is

reduced.
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Model performance reported in this paper and in

Neumeyer et al. (1997) support the observations of

Ross (1996). For Eq. (1) model, accuracy was 1.15 in

growth experiments conducted by Mellefont (2000) in

complex laboratory media and in inoculated, non-

sterile ground beef (see Tables 1 and 2). Model

accuracy for the ‘unedited’ literature data set, i.e. all

the literature data, was poorer, Af = 1.42. Similarly, in

an evaluation of a growth model for Pseudomonas

putida 1442, Neumeyer et al. (1997) reported model

accuracy of Af = 1.23 in laboratory media and 1.10 in

homogenous liquid foods (milk and milk products),

and 1.30 for a comparison to an unedited literature

data set (the poorer model performance for the liquid

media was attributed by Neumeyer et al. (1997) to

inter-strain differences).

The critical values described above for the bias

and accuracy factors enable objective performance

evaluation of predictive models. However, they are

imperfect because systematic deviations in predic-

tions between observed and predicted responses may

be obscured (Ross, 1996). Thus, graphical methods

for comparison of observed vs. predicted growth are

also important. Figs. 1 and 2 and the residuals plot

(Fig. 3) reveal that, overall, Eq. (1) describes the data

well. For the ‘edited’ literature data set, there is little

evidence of any systematic deviation in predictions.

It was noted, however, that some points in the

‘media’ category deviated markedly from the line

of equivalence (i.e. outside the 90% boundary). Most

outliers occurred at generation times V 5 h and the

difference between observed and predicted growth

was several-fold away (Fig. 1). Many of those data,

however, were generated with one or more environ-

mental factors approaching growth limiting condi-

tions. Additionally, 18 of the 26 outliers were

derived from one source (Buchanan and Klawitter,

1992) and the bias factor, Bf = 1.38, reflects the over-

prediction of growth by Eq. (1) for this data (Table

1). It is likely that data set is not representative of the

response of most E. coli. The reasons for this are

unknown but may be due to differences in strain

types and/or experimental methodology. The model

appears to be too conservative under conditions that

lead to slow growth (i.e. the greater number of points

below the line of equivalence in Fig. 1). This is

reflected in the bias factor for the data set (Bf = 0.92).

These points are usually generated under unfavoura-

ble conditions for growth. The reason for this behav-

iour is unknown, but is consistent with other reports

for a variety of model types (McClure et al., 1994;

Sutherland et al., 1995; Miles et al., 1997; Neumeyer

et al., 1997; Salter, 1998; Augustin and Carlier,

2000).

For the ‘meat’ data set, which includes results from

laboratory inoculation studies in ground beef (Melle-

font, 2000), Eq. (1) describes the data well with most

of the points lying close to the line of equivalence

(Fig. 2), reflected in the bias factor (Bf = 0.97). How-

ever, for the ‘other foods’ category, Eq. (1) describes

the data ‘less well’. The majority of predictions are

much faster than the observed growth, thus, the model

is too conservative. This is reflected in the poor bias

factor (Bf = 0.63).

The results from the graphing methods support the

validity of the calculated bias factors. The limits

proposed by Ross (1999) will now be used to evaluate

the performance of Eq. (1).

Using the data from the literature, Eq. (1) performs

well in almost all of the categories considered (Table

3). From the literature performance evaluation, the bias

factors for the ‘edited’ (Bf = 0.92), ‘media’, (Bf = 0.93)

and ‘meat’ (Bf = 0.97) data sets all fall into the best

level proposed by Ross (1999), i.e. 0.90 to 1.05.

Additionally, as the bias factors are < 1, the model

can be considered ‘fail-safe’ on average. Eq. (1) has

four independent variables. Therefore, according to

Ross et al. (2000), the best performance that should be

expected from Eq. (1) is an accuracy factor of V 1.4.

The accuracy factors of the ‘edited’ (Af = 1.29),

‘media’ (Af = 1.28) and ‘meat’ (Af = 1.26) data sets

are all < 1.4, indicating that Eq. (1) has an acceptable

level of accuracy. Although Eq. (1) performed less

well for the ‘food’ data set, Bf = 0.86 and Af = 1.36,

both of the performance indices are close to the levels

considered to indicate a ‘good’ level of performance.

This was also true for the unedited literature data set

(Bf = 0.85 and Af = 1.42).

The poorest level of performance for Eq. (1)

occurred for the ‘other foods’ category (Bf = 0.63

and Af = 1.68). It was noted previously that the major-

ity of foods in this category are milk products, which

account for 45 out of the 48 growth observations.

Closer scrutiny of the individual data sets (see Table

2), and the results presented in Figs. 2 and 3, indicate

that the low bias and high accuracy factors are
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observed consistently, as opposed to over- and under-

predictions cancelling each other out.

Eq. (1) performed better than PMP or FMM for the

majority of the data sets considered (Table 3). Despite

that PMP predictions were often close to those of Eq.

(1), Eq. (1) outperformed this model for meat. It

should be noted that due to differences in the model

limits, Eq. (1) was compared to an average of 24%

more data than PMP. While bias factors were ‘good’

for some data categories, accuracy was poor, suggest-

ing predictions of FMM are potentially unreliable.

FMM predicts the effects of three variables. The

model is expected, thus, to have an accuracy of

around 1.3. In only one category, ‘other foods’ was

the accuracy factor within the expected limits

(Af = 1.29). The accuracy factors for the remaining

categories were higher than 1.3, but covered a narrow

range (Af = 1.47 to 1.55). This suggests that no matter

how the data is subdivided or regrouped, the accuracy

factor will not improve, possibly because the model

has poor Bf values.

The exceptions to the good performance of Eq.

(1) were the ‘unedited’ and ‘other foods’ data sets.

FMM appeared to perform well for the unedited data

set, with a ‘good’ Bf of 1.07. However, the unedited

data set contained many predictions outside the

model limits for FMM. Due to its wider range of

applicability, Eq. (1) was compared to approximately

twice as much data. Closer scrutiny of the data

reveals that FMM performs poorly in the ‘media’

and ‘food’ data sets. As these two categories com-

prise the bulk of the unedited data set, it is likely

that the over-prediction in media is ‘‘cancelled out’’

by the under-prediction in the foods. Thus, for

comparative purposes, the ‘edited’ data set is more

appropriate, and although FMM had an acceptable

bias factor, Eq. (1) performed better. For the ‘other

foods’ category, although FMM had better bias and

accuracy factors than Eq. (1), its performance was

still considered ‘poor’ by the proposed critical limits.

As no model performed well for this category, it

would appear that none are applicable, possibly

because important factors affecting E. coli growth

in these products are not included in the models.

This is termed ‘completeness error’ and arises

because only a limited number of environmental

factors can be included in the model in practice

(Ross et al., 2000).

The consistently good performance of Eq. (1) for

the ‘meat’ data may arise from the inclusion of the

lactic acid term in the model, a parameter that is not

explicitly included in the other models considered in

the comparisons. This hypothesis was tested by

removing the lactic acid terms from Eq. (1) and re-

calculating the bias and accuracy factors for all the

meat data. With the lactic acid terms included, bias

and accuracy factors for all the meat data from the

literature were 0.97 and 1.26, respectively (see Table

3). When the lactic acid terms were removed from Eq.

(1), the bias and accuracy factors were 0.78 and 1.39.

Thus, the hypothesis that inclusion of the lactic acid

terms in Eq. (1) is responsible for the improved

predictions for growth of E. coli in meat products is

supported. The effect of additional variables on the

performance of a model can be illustrated by compar-

ing the performance of Eq. (1) to that of the model of

Salter et al. (1998). The model of Salter et al. (1998) is

for temperature only. Its performance, compared to

that of Eq. (1), is summarised in Table 5. Eq. (1),

which includes terms for pH, water activity and lactic

acid, describes the data of Gill and Newton (1980) and

Grau (1983) much better than the model of Salter et

al. (1998). This highlights the requirement for appro-

priate predictive models relevant to the product and

process.

The performance of the models was also assessed

against sub-sets of the data divided on the basis of

generation time (Table 4). Close-to-optimal environ-

mental conditions are characterised by short genera-

tion times and conditions closer to the limits for

growth are characterised by long generation times.

The 1- to 5-h category is intermediate. Eq. (1) con-

sistently performed best at the fast and intermediate

Table 5

Bias and accuracy factors for growth of non-pathogenic E. coli on

meat presented in Salter et al. (1998) compared to Eq. (1) and the

temperature model of Salter et al. (1998) (best bias and accuracy

marked in bold)

Reference n Model

Eq. (1) Salter et al. (1998)

Bias Accuracy Bias Accuracy

Gill and Newton

(1980)

4 0.70 1.43 0.43 2.31

Grau (1983) 9 0.72 1.40 0.53 1.90

Smith, 1985 8 1.04 1.09 0.90 1.18
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generation times. PMP did not perform best for any of

the generation time categories, although predictions

were often similar between the two models. As for Eq.

(1), the predictions by PMP were better than those of

FMM. The best performance for PMP was observed at

rapid generation times, i.e. < 1 h. However, as gener-

ation times increase, predictions become consistently

less reliable, suggesting this model can only be used

with confidence under conditions where rapid bacte-

rial growth is expected.

Comparison of the performance of Eq. (1) against

the other models also highlighted the influence of

fidelity of the data used in the comparison. Under

circumstances where a number of models predict

poorly, it may indicate a deficiency in the literature

data itself. Literature data sometimes provides incom-

plete information on experimental design and meth-

ods, or insufficient data may have been generated for

growth calculations. Consistently poor model predic-

tions may also reveal inter-strain differences. For

example, Eq. (1) predicted poorly for the data of

Ingraham (1958) in nutrient broth using E. coli K12

with Bf = 0.62 and Af = 1.63 (Table 1). Other data for

E. coli K12 are presented by Gill and Phillips (1985)

and Bernaerts et al. (2000). When compared to those

data for studies in unmodified BHI broth, Eq. (1) has

performance indices of Bf = 0.65, Af = 1.53 and

Bf = 0.71, Af = 1.52, respectively (Table 1). Given the

similarity in the values of the performance indices for

the data, it is likely that the poor performance of Eq.

(1) is due to differences in growth characteristics

between E. coli K12 and the strains used to develop

Eq. (1). PMP and FMM also predicted poorly for this

data (FMM Bf = 0.68, Af = 1.46 and PMP Bf = 0.57,

Af = 1.73 for comparisons to Ingraham (1958); FMM

Bf = 0.74, Af = 1.33 and PMP Bf = 0.65, Af = 1.55 for

comparisons to Bernaerts et al. (2000)). It is probable

that strains other than E. coli K12 were used to

produce FMM, and PMP predictions are for E. coli

O157:H7. Poor model performance due to inter-strain

differences is expected because ‘‘predictive models

are generally produced using fast growing strains so

that predictions are guaranteed to be ‘fail-safe’’’

(McMeekin et al., 1993).

McClure et al. (1994), Ross (1996), Miles et al.

(1997), Neumeyer et al. (1997) and Salter et al. (1998)

considered that there are to be many problems inher-

ent in using literature data in model performance

evaluations including deficiencies in the literature data

and decreased experimental control which is reflected

in a higher Af. While our results from the literature

performance evaluation reinforce those authors’

observations, the role of a literature performance

evaluation should not be undervalued. A search of

the literature yielded 1240 growth rate data, which

was edited to 1025, in a period of approximately 8

weeks. A similar time period was required to perform

a laboratory inoculation study in ground beef which

yielded seven growth rate data (Mellefont, 2000). The

role of literature data in predictive model evaluations

can be optimised by the implementation of assessment

criteria, such as those described above, to improve the

quality of the literature data used in evaluations.

Editing of the literature data set allows model per-

formance to be assessed more objectively, because the

model’s performance is not prejudiced by unrepresen-

tative data.

4.1. Summary

The performance of three models for E. coli growth

was rigorously evaluated against a large set of pub-

lished and novel data. Eq. (1) performed well against

food-based and media-based data. In a detailed com-

parison to other predictive models for E. coli growth,

Eq. (1) consistently predicted more accurately at faster

generation times, i.e. GTV 5 h. The model was less

accurate at generation times >5 h, and this is an

important observation because most users of predic-

tive models will be interested in predicting the con-

sequences of conditions that lead to slower growth

rates. However, it should be noted that Eq. (1) always

encompassed the largest number of data, and there-

fore, the widest range of conditions, including those at

which growth rates, are often more variable and more

difficult to predict. In general, Eq. (1) predicted more

accurately even with this larger domain. A notable

exception to the good performance of Eq. (1) was for

data from the ‘other foods’ category, largely data from

milk and milk-based products. The other models also

showed poor performance for this category, indicating

that the poor predictive ability of Eq. (1) for these

foods is not a problem unique to this model.

This performance evaluation has highlighted some

of the difficulties and subtleties of the model evalua-

tion process. Unless data is collected under well-
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controlled conditions, variability in data can be

expected due to normal experimental error and bio-

logical variability, and this variability is likely to be

larger for data obtained from the literature. The bias

and accuracy factors are useful tools in the model

evaluation process, however, they do not generate

absolute measures of performance: the values of the

performance indices will be specific to the data sets

used in the evaluation and care should be taken in

their interpretation. The value of the data presented in

the literature should not be underestimated, however,

an awareness of its limitations is essential.
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